PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Visco-elastic fluid model in an inclined porous stenosed artery with slip effect and body acceleration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper analyzes an unsteady magnetohydrodynamic blood flow model of an visco-elastic fluid through an inclined porous stenosed artery with body acceleration and slip effect. Navier-Stokes equations have been used to describe the blood flow model. The governing equation of blood flow is solved by an analytic method by considering blood as an incompressible, visco-elastic fluid, and suspension of RBC’s in plasma. Axial velocity, blood acceleration, flow rate, and shear stress are derived numerically by using the finite Laplace and Hankel transformation and their inverse. The effect of parameters such as the visco-elasticity parameter, Womersley number, Hartmann number, inclination angle, parameter of slip, and body acceleration frequency is analyzed. Axial velocity reduces as the Hartmann number and visco-elasticity parameter enhance and it enhances with the enhancement of the slip parameter and inclination angle. The study is beneficial for finding the effect of slip parameter, porosity factor and Hartmann number when a human body is exposed to MRI and CT scan.
Rocznik
Strony
82--104
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • University Institute of Engineering and Technology, Maharshi Dayanand University, Haryana, INDIA
  • University Institute of Engineering and Technology, Maharshi Dayanand University, Haryana, INDIA
Bibliografia
  • [1] Cowling T.G. (1957): Megnetohydrodynamis.– Interscience Publishers, New York.
  • [2] Beaver G.S. and Joseph D.D. (1967): Boundary conditions at a naturally permeable wall.– Journal of Fluid Mechanics, vol.30, pp.197-207.
  • [3] Saffman P. D. (1971): On the boundary conditions at the surface of porous medium.– Study of Applied Mathematics, vol.50, pp.93-101.
  • [4] Chaturani P. and Biswas D. (1984): A comparative study of poiseuille flow of a polar fluid under various boundary conditions with applications to blood flow.– Rheologica Acta, vol.23, No.4, pp.435-445.
  • [5] Elshehawey E.F., Elbarbary E.M.E. Afifi N.A.S. and Elshahed M. (1999): MHD flow of an visco-elastic fluid under periodic body acceleration.– International. Journal Mathematics & Mathematical Sciences, vol.23, No.11, pp.795-799.
  • [6] Tzirtzilakis E.E. (2005): A mathematical model for blood flow in magnetic field.– Physics of Fluid, vol.17, No.7, Article ID 077103, pp.1-15.
  • [7] El-Shehawey EF., El-Debe N.T. and El-Desoky I.M. (2006): Slip effects on the peristaltic flow of a non-Newtonian Maxewellian fluid.– Acta Mechanica, vol.186, pp.141-159.
  • [8] Ponalagusamy (2007): Blood flow through an artery with mild stenosis: A two-layered model, different shape of stenosis and slip velocity at wall.– Journal of Applied Science, vol.7, pp.1071-1077.
  • [9] Nagarani P. and Sarojamma G. (2008): Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery.– Korea-Australia Rheology Journal, vol.20, pp.189-196.
  • [10] Hayat T., Hussain Q. and Ali N. (2008): Influence of partial slip on the peristaltic flow in porous medium.– Physica A, vol.387, No.14, pp.3399-3409.
  • [11] Rathod V.P. and Tanveer S. (2009): Pulsatile flow of couple stress fluid through porous medium with periodic body acceleration and magnetic field.– Bulletin of Malaysian Mathematical Society Series, vol.32, pp.245-259.
  • [12] Verma N. and Parihar R. S. (2009): Effects of magneto-hydrodynamic and hematocrit on blood flow in very narrow capillaries.– International Journal of Applied Mathematics and Computation, vol.1, No.1, pp.30-46.
  • [13] Nadeem S. and Akram S. (2010): Slip effects on the peristaltic flow of a Jeffrey fluid in an asymmetric channel under the effect of an induced magnetic field.– International Journal for Numerical Methods in Fluids, vol.63, No.3, pp.374-394.
  • [14] Sinha A., Misra J.C. and Shit J. C. (2010): Mathematical modeling of blood flow with variable viscosity through an intended artery due to an LDL effect in the presence of magnetic field.– International Journal of Physical Sciences, vol.5, No.12, pp.1857-1868.
  • [15] Chakraborty U.S., Biswas, D. and Paul M. (2011): Suspension model blood flow through an inclined tube with an axially non-symmetrical stenosis.– Korea-Australia Rheology Journal, vol.23, No.1, pp.25-32.
  • [16] Eldesoky I.M. (2012): Slip effects on the unsteady MHD pulsatile blood flow through porous medium in an artery under the effect of body acceleration.– International Journal of Mathematics and Mathematical Sciences, Article ID 860239, p.26.
  • [17] Tripathi (2012): A mathematical model for blood flow through an inclined artery under the influence of an inclined magnetic field.– Journal of Mechanics in Medicine and Biology, vol.12, pp.1-18.
  • [18] Sharma M.K., Bansal K. and Bansal S. (2012): Pulsatile unsteady flow of blood through porous medium in a stenotic artery under the influence of transverse magnetic field.– Korea-Australia Rheology Journal, vol.24, No.3, pp.181-189.
  • [19] Sinha A., Shit G.C. and Kundu P.K. (2013): Slip effect on pulsatile flow of blood through a stenosed arterial segment under periodic body acceleration.– ISRN Biomedical Engineering, vol.2013, Article ID 925876, p.10.
  • [20] Sharma M. Sharma P. and Nasha V. (2013): Pulsatile MHD arterial blood flow in the presence of double stenoses.– Journal of Applied Fluid Mechanics, vol.6, No.3, pp.331-338.
  • [21] Eldesoky I.M.I. (2014): Unsteady MHD pulsatile blood flow through porous medium in stenotic channel with slip at permeable walls subjected to time-dependent viscosity (injection/suction).– Walailak Journal of Science and Technology, vol.11, No.11, pp.901-922.
  • [22] Sharma M. Singh K. and Bansal S. (2014): Pulsatile MHD flow in an inclined catheterized stenosed artery with slip on the wall.– Journal of Biomedical Science and Engineering, vol.7, pp.194-207.
  • [23] Srivastava N. (2014): Analysis of flow characteristics of the blood flowing through an inclined tapered porous artery with mild stenosis under the influence of an inclined magnetic field.– Journal of Biophysics, Article ID 797142, p.9.
  • [24] Sharma M., Sharma P. and Nasha V. (2015): Pulsatile blood flow through stenosed artery with axial translation.– International Journal of Biomathematics, vol.8, No.3, 1550028, p21.
  • [25] Kumar A., Chandel R.S., Shrivastava R., Shrivastava K. and Kumar S. (2016): Mathematical modelling of blood flow in an inclined tapered artery under MHD effect through porous medium.– International Journal of Pure and Applied Mathematical Sciences, vol.9(1), pp.75-88.
  • [26] Sharma M., Nasha V. and Sharma P. (2016): A study for analyzing the effect of overlapping stenosis and dilatation on non-Newtonian blood flow in an inclined artery.– Journal of Biomedical Science and Engineering, vol.9, pp.576-596.
  • [27] Chitra M. and Karthikeyan D. (2018): Unsteady MHD oscillatory blood flow in an inclined tapered artery with mild stenosis through porous medium: effects of slip velocity.– International Journal of Mathematics Trend and Technology (IJMTT)-special issue NCCFQET, pp.44-49.
  • [28] Kumari S., Rathee R. and Nandal J. (2019): Unsteady peristalsis transport of MHD fluid through an inclined stenosed artery with slip effects.– International Journal of Applied Engineering research, vol.24, No.3, pp.645-659.
  • [29] Manisha, Nasha V. and Kumar S. (2021): MHD Two-layered blood flow under effect of heat and mass transfer in stenosed artery with porous medium.– International Journal of Advance Research in Engineering and Technology, vol.12, No.6, pp.63-76.
  • [30] Jaafar N.A., Zainulabidin S.N.M., Ismail Z. and Mohamad A.Q. (2021): Mathematical analysis of unsteady solute dispersion with chemical reaction through a stenosed artery.– Journal of Advanced Research in Fluid Mechanical and Thermal Science, vol.86, No.2, pp.56-73.
  • [31] Shah N.A. Zubaidi A.Al. and Saleem S. (2021): Study of magneto-hydrodynamic pulsatile blood flow through an inclined porous cylindrical tube with generalized time-nonlocal shear.– Advance in Mathematical Physics, article Id 5546701, p.11.
  • [32] Manisha Nasha V. and Kumar S. (2022): Non-newtonian blood flow model with the effect of different geometry of stenosis.– Journa1 of Mathematical and Computational Sciences, vol.12, pp.1-21.
  • [33] Manisha and Kumar S. (2022): Effect of cosine shape stenosis on non-newtonian blood flow with Casson model in stenosed artery.– International Journal of Engineering Trends and Technology, vol.70, No.8, pp.336-346.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8f556ba-d3c3-4d01-9f3d-8a846dfdce37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.