Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Al and Cu doped ZnO nanoparticles are considered as appropriate for modulation of structural and optoelectronic properties. Al atoms are found to substitute the host Zn whereas Cu dopants mainly segregate in grain boundaries and thereby determine the optical properties. The undoped as well as Al and Cu doped ZnO exhibit spherical well defined particles. The spherical nanoparticles change to rod type structures on co-doping. The average particle size decreases on doping what consequently results in an increment in band gap. Blue shift in UV absorption is governed by the functional group of glucose; further blue shift occurring on metal doping may be attributed to Burstein-Moss effect. PL spectra of doped and undoped ZnO show a dominant near band gap UV emission along with visible emission owing to the defects. The PL peak intensity increases on doping with Cu and Al. The linear I-V characteristics indicate the ohmic behavior of ZnO nanostructures.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
69--78
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Department of Physics, Assam University (Diphu Campus), 782 460, India
autor
- Department of Physics, Rajiv Gandhi University, Itanagar, 791 112, India
autor
- Department of Physics, Assam University (Diphu Campus), 782 460, India
Bibliografia
- [1] Tynell T., Karpinnen M., Semicond. Sci. Technol., 29 (2014), 043001.
- [2] Vindhya K., Bhoopathi G., Devarajan V.P., Saravanan M., Res. J. Recent. Sci., 3 (2014), 238.
- [3] Faleni N., Moloto M.J., IJRRAS, 1 (2013), 127.
- [4] Mondal S., Bhattacharyya S.R., Mitra P., Pramana-J. Phys., 2 ( 2013), 315.
- [5] Tarasov K., Raccurt O., J. Nanopart. Res., 12 (2011), 6717.
- [6] Alkahlout A., Al Dahoudi N., Grobelsek I., Jilavi M., De Oliveira P.W., J. Mater., 3 (2014), 235638.
- [7] Choi Y.S., Kang J.W., Hwang D.K., Park S.J.,IEEE T. Electron Dev., 57 (2010), 26.
- [8] Kim K.K., Niki S., Oh J.Y., Song J.O., Seong T.Y., Park S.J., Fujita S., Kim S.W., J. Appl. Phys., 6 (2005), 066 103.
- [9] Wu M., Shih W., Tsai W., J. Phys. D Appl. Phys, 31 (1998), 943.
- [10] Puchert M.K., Hartman A., Lamb R.N., J. Mater. Res., 10 (1996), 2463.
- [11] Furukawa A., Ogasawara N., Yokojawa R., Tokunaga T., Jpn. J. Appl. Phys., 47 (2008), 8799.
- [12] Ozgur U., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Dogan S., Avrutin V., Cho S.J., Markoc H., J. Appl. Phys., 98 (2005), 041301.
- [13] Yu G.F., Long Y.Z., Zhang H.D., Sun B., Lin D.P., J. Nanosci. Lett., (2014), 4.
- [14] Musat V., Teixeira B., Fortunato E., Monteiro R.C.C., Vilarinho P., Surf. Coat. Tech., 180 (2004), 659.
- [15] Chow L., Lupan O., Chai G. KHALLAF H., Ono L.K., Roldan Cueny B., Tiginyanu I.M., Ursaki V.V., Sontea V., Schulte A., Sensor Actuat. A-Phys., 189 (2013), 399.
- [16] Mukhtar M., Munisa L., Saleh R., Mater. Sci. Appl., 3 (2012), 543.
- [17] Srinivasan N., Kannan J.C., Mater. Sci.-Poland, 33 (2015), 205.
- [18] Patwari G., Bodo B.J., Singha R., Kalita P.K., Res. J. Chem. Sci., 9 (2013), 45.
- [19] Klug H.P., Alexander L.E.,X-ray diffraction procedure for polycrystalline and Amorphous Materials, 1st ed., Wiley, New York, 1954, p. 491.
- [20] Sing V., Sharma P.K., Chauhan P., Mater. Charact., 62 (2011). 43.
- [21] Kaur G., Mitra A., Yadav K.L., Adv. Mats. Lett., 1 (2015), 73.
- [22] Kumar S., Singh F., Kapoor A., Int. J. Recent Trend. Electr. Electron., 1 (2014), 25.
- [23] Samanta P.K., Saha A., Kamilya T., J. Nanoelectron. Phys., 4 (2014), 04015.
- [24] Barman B., Sarma K.C., Chalcogenide Lett., 3 (2011), 171.
- [25] Khan W., Khan Z.A., Saad A.A., Shervani S., Saleem A., Naqvi A.H., Int. J. Mod. Phys, 22 (2013), 630.
- [26] Burstein E., Phys. Rev. 93 (1954), 632.
- [27] Moss T.S., Proc. Phys. Soc. London B, 67 (1954), 775.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8f510c0-c1fe-4487-a343-75e53df33aed