PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of reinforced ice as alternative building material in cold regions: an overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The design of suitable thermophysical properties of reinforced ice as well as employing the novel material in feasible ways represent key aspects towards alternative building sustainability. In this overview research studies dealing with reinforced ice structures have been presented with an emphasis on construction parameters and reinforcement materials of the structures. The main focus of the study is directed to the identification of the main issues related to the construction of reinforced ice structures as well as the environmental and economic impact of such structures. Obtained research data shows that the compressive, tensile, and bending strength of reinforced ice can be increased up to 6 times compared to plain ice. The application of reinforcement materials decreases creep rate, enhances ductility, and reduces brittle behaviour of ice. Assessed reinforced ice structures were mainly found to be environmentally friendly and economically viable. However, in most of the analysed studies construction parameters and physical properties were not defined precisely. The conducted overview indicates the necessity for more comprehensive and more accurate data regarding reinforced ice construction, applied methods, and processes, and preparation of ice composites in general.
Słowa kluczowe
Rocznik
Strony
269--300
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Rudera Boskovica 32, 21000 Split, Croatia
  • University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Rudera Boskovica 32, 21000 Split, Croatia
  • University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Rudera Boskovica 32, 21000 Split, Croatia
  • University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Rudera Boskovica 32, 21000 Split, Croatia
  • University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Rudera Boskovica 32, 21000 Split, Croatia
Bibliografia
  • [1] Huang L., Krigsvoll G., Johansen F., Liu Y., Zhang X.: Carbon emission of global construction sector. Renew. Sust. Energ. Rev. 81(2017), P2, 1906–1916. doi:10.1016/j.rser.2017.06.001
  • [2] Grinevich D.V., Nuzhnyi G.A., Buznik V.M., Yakovlev N.O., Goncharova G.Yu., Razomasov N.D.: Destruction of reinforced ice composition materials upon bending mechanical loading. Inorg. Mater. Appl. Res. 11(2020), 941–946.
  • [3] Glockner P.G.: Reinforced ice and ice domes: opportunities for the North. Int. J. Space Struct. 3(1988), 2, 84–102. doi: 10.1177/026635118800300203
  • [4] Liu Z., Yu T., Yan N., Gu L.: The influence of thermophysical properties of frozen soil on the temperature of the cast-in-place concrete pile in a negative temperature environment. Arch. Thermodyn. 44(2023), 2, 21–48. doi: 10.24425/ather.2023.146557
  • [5] Makkonen L.: Ice and Construction, State of the Art Report prepared by RILEM Technical Committee TC-118, Ice and Construction. Chapman & Hall, Cambridge2005.
  • [6] Vasiliev N.K., Pronk A.D.C., Shatalina I.N., Janssen F.H.M.E., Houben R.W.G.: A review on the development of reinforced ice for use as a building material in cold regions. Cold Reg. Sci. Technol. 115(2015), 56–63. doi: 10.1016/j.coldregions.2015.03.006
  • [7] Gold L.W.: Building ships from ice, Habbakuk and after. Interdiscip. Sci. Rev.29(2004), 4, 373–384. doi: 10.1179/03080180422501878
  • [8] DeGoes L., Neal J.T.: Selected military geology programs in the Arctic, 1950–1970. Rev. Eng. Geol. XIII(1998), 205–210.
  • [9] Pronk A.: All the possibilities researched for ice, Flexible Forming for Fluid Architecture (1st Edn.). Springer Cham, 2021. doi: 10.1007/978-3-030-71551-9
  • [10] Belis J., Pronk A., Martens K., Van Lancker B., Dispersyn J.: Experimental construction of a temporary church in reinforced ice. Adv. Struct. Eng. (2015), Abstracts, 34–34.
  • [11] Belis J., Ronsse B., Martens K., Van Lancker B., Cruz P.J.S., Deruyter G.: Reinforced ice structures: In the footsteps of Candela, Structures and Architecture (1st Edn). CRC, London 2016.
  • [12] Pronk A., Mistur M., Li Q., Liu X., Blok R., Liu R., Wu Y., Luo P., Dong Y: The 2017–18 design and construction of ice composite structures in Harbin. Structure. 18(2019), 117–127. doi: 10.1016/j.istruc.2019.01.020
  • [13] Wu Y., Liu X., Chen B., Li Q., Luo P., Pronk A.: Design, construction and monitoring of an ice composite shell structure. Autom. Constr. 106(2019), 102862. doi: 10.1016/j.autcon.2019.102862
  • [14] Luo P., Yang S., Nie Y., Wu Y., Chen J., Pronk A., Zhang R.: Collaborative design between architecture and structure of large complex ice shell based on air-ribbed inflatable mold: A case of ice restaurant. Int. J. Space Struct. 36(2021), 1, 37–47. doi: 10.1177/09560599211000961
  • [15] Sirotyuk V.V., Yakimenko O.V., Levashov G.M., Zakharenko A.A.: Reinforcement of ice cover with geosynthetic materials. Kriosfera Zemli XX(2016), 3, 79–86.
  • [16] Altunina L.K., Kuvshinov V.A., Dolgikh S.N.: Cryogels – a promising material for underground works in permafrost, Advances in the Geological Storage of Carbon Dioxide. Nato Sci. S. IV: Ear. En. 65(2006), 103–110. doi: 10.1007/1-4020-4471-2_10
  • [17] Scopus.com, https://www.scopus.com (accessed 25March 2023).
  • [18] Schulson E.M., Duval P.: Creep and fraction of ice. Cambridge University Press, Cambridge 2009. doi: 10.1017/CBO9780511581397
  • [19] Akyurt M., Habeebullah B., Zaki G.: Freezing phenomena in ice-water systems. Energy Convers. Manag. 43(2002), 1773–1789. doi: 10.1016/S0196-8904(01)00129-7
  • [20] Arenson L.U., Colgan W., Marshall H.P.: Physical, thermal, and mechanical properties of snow, ice and permafrost, Snow and Ice-Related Hazards, Risks and Disasters (1st Edn.). Academic Press, 2014. doi: 10.1016/B978-0-12-394849-6.00002-0
  • [21] Fukusako S.: Thermophysical properties of ice, snow, and sea ice. Int. J. Thermophys. 11(1990), 2, 353–372. doi: 10.1007/BF01133567
  • [22] Yen Y.: Review of thermal properties of snow, ice, and sea ice. CRREL Techn. Rep.,1981.
  • [23] GB 51202-2016: Technical standard for ice and snow landscape buildings. China Architecture & Building Press, 2016.
  • [24] Bošnjak J., Bodrožić Ćoko N., Jurčević M., Primorac I., Nižetić S.: Investigation of thermal properties of pykrete. IOP Conf. (EES) 1196(2023), 1. doi: 10.1088/1755-1315/1196/1/012055
  • [25] Syromyatnikova A.S., Bol’shakov A.M., Kychkin A.K., Alekseeva A.V.: Reinforcement of composites based on fresh ice with natural fillers. Inorg. Mater. Appl. Res. 11(2020), 4, 955–957. doi: 10.1134/S2075113320040371
  • [26] Buznik V.M., Goncharova G. Yu., Grinevich D.V., Nuzhny G.A., Razomasov N.D., Turalin D.O.: Strengthening of ice with basalt materials. Cold Reg. Sci. Technol.196(2022), 103490. doi: 10.1016/j.coldregions.2022.103490
  • [27] Kokawa T.: Ice shell construction in Hokkaido of Japan during 1980–2012. Int. J. Space Struct. 36(2021), 1, 26–36. doi: 10.1177/0956059920981867
  • [28] Association of Finnish Civil Engineers: RIL 218-2002: Snow constructions-general rules for design and construction. https://www.ril.fi/kirjakauppa/ohjeet-ja-normit/ril-218-2002-snow-constructions-general-rules-for-design-and-construction-p-43.html (accessed 30 Oct. 2022).
  • [29] Xie J., Yan M.-L., Yan J.-B.: Experimental study on PVA reinforced salt-water ice under uniaxial-compression at arctic low temperatures. Cold Reg. Sci. Technol.206(2023), 103751. doi: 10.1016/j.coldregions.2022.103751
  • [30] Pronk A., Vasiliev N., Belis J.: Historical development of structural ice, Structures and Architecture (1st Edn.). CRC, London 2016.
  • [31] Millar C., Orr J., Li Q., Yeung A., Chan A., Sheasby M., Gimenez Fernandez M., Baxter Chinery M., Qu M., Wai S.: The world’s first sprayed net hyperboloid ice structure. In: Proc. IASS Annual Symp. 2019 – Structural Membranes, 2019.
  • [32] Wu Y., Liu X., Luo P., Zhang R.: Structural analysis and construction quality assessment of free-form ice composite shell. Structures. 27(2020), 868–878. doi:10.1016/j.istruc.2020.06.032
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8ecfbfa-d324-4a7b-89fa-d02596d14bfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.