PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Reclaim Addition on the Emission of PAHs and BTEX from Moulding Sands with Furfuryl Resin with the Average Amount of Furfuryl Alcohol

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the results of decomposition of the moulding sand with furan-formaldehyde resin (with middle content of furfuryl alcohol about 50 %) also on a quartz matrix and with additions of a reclaimed material, under industrial conditions, are presented. Investigations of the gases emission in the test foundry plant were performed according to the original method developed in the Faculty of Foundry Engineering, AGH UST. The dependence of the emitted PAHs and BTEX group substances and ignition losses on the reclaim fraction in a moulding sand are of a linear character of a very high correlation coefficient R2. On the bases of the derived equations, it is possible to determine the amount of the emitted hazardous substances from the moulding sand containing the known fraction of the reclaim.
Rocznik
Strony
37--42
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Kraków, Poland
Bibliografia
  • [1] Crandell G.R., Schifo J.F., Mosher G. (2006). CERP organic HAP emission measurements for iron foundries and their use in development of an AFS HAP guidance document. AFS Transactions, 06-031(10), 1-17.
  • [2] Dietert H.W., Graham A.L., Praski R.M. (1976). Gas evolution in foundry materials. Its source and measurement. AFS Transactions 84, 221-228.
  • [3] Elliehausen H.J., Knecht U., Maa β-Rühl B. (1984). Schdstofbelastung durch Formsande einer Eisengieβerei. Stuttgart: Gentner Verlag, 283-8.
  • [4] Fabbri D., Vassura I. (2006). Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis. Journal of Analysis and Applied Pyrolysis 75, 150-158.
  • [5] Fletcher AC, Ades A. (1984). Lung cancer mortality in a cohort of English foundry workers. Scand. J. Work Environ. Health 10, 7-16.
  • [6] Fox J.R., Adamovits M., Henry C. (2002). Strategies for Reducing Foundry Emissions. AFS Transactions 110, 1299-1309.
  • [7] Holtzer M., Bobrowski A., Dańko R., Kmita A., Kubecki M., Żymankowska-Kumon S., Górny M. (2014). Emission of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and xylene (BTEX) from the furan moulding sands with addition of the reclaim. Metalurgija 52 (in print).
  • [8] Holtzer M., Dańko R., Kubecki M., Żymankowska-Kumon S., Bobrowski A., Kmita A., Górny M. (2014). Influence of the reclaim addition to the moulding sand with furan resin on the emission of toxic gases at high temperature. 71st World Foundry Congress, 19-21 May 2014. Bilbao, Spain (in print).
  • [9] Holtzer M., Grabowska B., Żymankowska-Kumon S., Kwaśniewska-Królikowska D., Dańko R., Solarski W. & Bobrowski A. (2012). Harmfulness of moulding sands with bentonite and lustrous carbon carriers. Metalurgija 51(4), 437-440.
  • [10] Holtzer M., Kubecki M., Dańko R., Żymankowska-Kumon S., Bobrowski A. (2013). Research on the influence of moulding sand with furan resin on the environment. 4th International Symposium on High-Temperature Metallurgical Processing, 643-650. DOI: 10.1002/978111-8663448.ch77.
  • [11] Humfrey C.D.N, Levy L.S. & Faux S.P. (1996). Potential carcinogenicity of foundry fumes: a comparative in vivo-in vitro study. Food and Chemical Toxicology 34, 1103-1111. DOI: 10.1016/S0278-6915(97)00081-1.
  • [12] Knecht U., Elliehausen H.J., Woitowitz H.J. (1986). Gaseous and adsorbed PAH in an iron foundry. British Journal of Industrial Medicine 43, 834-838.
  • [13] Kubecki M., Holtzer M., Żymankowska-Kumon S. (2013). Investigations of the temperature influence on formation of compounds from the BTEX group during the thermal decomposition of furan resin. Archives of Foundry Engineering 13(2), 85-90.
  • [14] Palmer W.G., Scott W.D.(1981). Lung cancer in ferrous workers: a review. Am. Ind. Hyg. Assoc. J. 42, 329-340. DOI: 10.1080/15298668191419848.
  • [15] Ribeiro M.G. & Filho W.R.P. (2006). Risk assessment of chemicals in foundries: the international chemical toolkit pilot-project. Journal of Hazardous Materials A136, 432-437. DOI: 10.1016/j.jhazmat.2006.01.019.
  • [16] Scarbel P., Bats C.E. & Griffin J. (2006). Effect of mold and binder formulation on gas evolution when pouring aluminum casting. AFS Transactions 114, 435-445.
  • [17] Schifo J.F., Radia J.T., Crandell G.R., Mosher G. (2003). Iron foundry hazardous air pollutants: What we know and what we don’t. AFS Transactions 111, 1173-1190.
  • [18] Report from research No. BO-1316 (2011). Institute for Ferrous Metallurgy, Gliwice, Poland (in Polish).
  • [19] Experimental stand for investigating the emissivity and harmfulness of gases emitting from technological materials applied in casting and foundry processes (2012). Patent application: P-398 709 with legal effect.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8e7ba93-e1d3-4589-9bc1-fafa531c0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.