Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let (X(t))t>0, be a stochastically continuous symmetric Lévy process with values in a complete separable group G. We denote by (μt)t>0 the semigroup of one-dimensional distributions of X(t). Suppose that H is a Borel subgroup of G such that μt (H) > 0 for all t > 0. We obtain a decomposition of the generator of the process X ( t ) into a bounded part concentrated on Hc and the generator of a semigroup concentrated on H. This yields the 0-1 law for such processes. We also examine the differentiation of transition probability of the induced Markov process π (X (t)) on the homogeneous space G/H.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
97--104
Opis fizyczny
Bibliogr. 4 poz.
Twórcy
autor
- Institute of Mathematics, Wrocław Technical University, 50-370 Wrocław, Poland
autor
- Institute of Mathematics, Wrocław Technical University, 50-370 Wrocław, Poland
Bibliografia
- [1] H. Byczkowska and T. Byczkowski, Zero-one low for symmetric convolution semigroups of measures on groups, J. Theoret. Probab. 289 (1998), pp. 633-643.
- [2] T. Byczkowski and A. Hulanicki, Gaussian measure of normal subgroups, Ann. Probab. 11 (1983), pp. 685-691.
- [3] M. Loève, Probability Theory, Part II, Springer, New York 1978.
- [4] E. Siebert, Decomposition of convolution semigroups on Polish groups and zero-one law,Hokkaido Math. J. 16 (1987), pp. 235-255.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8e16c28-8c91-4373-9593-7255ca51ffd7