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In this study, the multiaxial ductility factor was analyzed based on the power-law creep
grain-boundary cavities growth theory under multiaxial stress states. Based on this theory,
the theoretical cavities growth rates under a multiaxial stress state were discussed and the
predicting model of a stress-state parameter α was revised by using an empirical fitting
expression denoted as αWu, which exhibited a good agreement to analytical results of the
stress-state parameter α and multiaxial cavities growth rates. Then, according to the re-
lationship between uniaxial and multiaxial creep failure strain, a new empirical predicting
model of multiaxial ductility factor MDFWu was established which involved the multiax-
ial parameter αWu and uniaxial parameter α0. Besides, the theoretical model of multiaxial
ductility factorMDF could also be established. By fitting the theoretical values ofMDF , an-
other predicting model MDFWM was proposed. The development of two multiaxial ductility
factor predicting models could be achieved. Finally, predictions of these two novel multiax-
ial ductility factor models and the Cocks-Ashby as well as Wen-Tu model were compared
with experimental data, and the prediction accuracy of MDFWu and MDFWM models was
significantly improved, especially for the latter one.

Keywords: multiaxial ductility factor, cavities growth theory, power-law creep, multiaxial
stress state

1. Introduction

Metallic components in modern industrial core equipment (such as aero engines, ultra super-
critical generator sets, nuclear motor sets, etc.) are subjected to higher temperature in order to
realize the continuous improvement of energy conversion efficiency. Thus, creep cracking is one
of the most important failure mechanisms of these components, especially when containing pre-
cracks, which will cause failures before their design life (Yatomi et al., 2004). A large number of
theories and experiments have proved that creep crack initiation and propagation are the main
causes of structural failure in service (Holdsworth, 1992).
For safety reasons, the structural integrity assessment of components operating in the creep

regime is imperative (Wen and Tu, 2014). The analysis of creep cracking and failure based upon
continuum damage mechanics has made a remarkable development in recent years, which makes
up for deficiency of fracture mechanics (Wen and Tu, 2014). Within this approach, the creep
cracking process will be directly correlated to the creep damage described by a damage variable
around the crack tip. Once the damage variable of one material point reaches the critical value,
it is thought to be failed, and the crack growth length can be measured by the whole damaged
area. To effectively describe the complex stress state around the crack tip, for example, the stress
state around the crack tip of a compact tension specimen should be a multiaxial distribution. A
multiaxial ductility factor (MDF ) is usually used to build the relationship between the multiaxial
ductility ε∗f and uniaxial ductility εf

ε∗f = MDFεf (1.1)
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To effectively characterize the relationship between them, various multiaxial ductility factor
(MDF ) models were proposed, which can be roughly divided into the following bases: empirical
formula; semi-empirical formula; physical mechanisms.
For empirical formula, Manjoine (1975) proposed an MDF model which was inversely pro-

portional to triaxiality according to mechanical performance of annealed 304 stainless steel

MDF =
ε∗f
εf
=
σeq
3σm

(1.2)

where σm and σeq are the hydrostatic stress and von Mises equivalent stress, respectively.
For a semi-empirical formula, Spindler (2004) modified the Rice-Tracey MDF model (Rice

and Tracey, 1969) and developed a semi-empirical MDF model considering the nucleation and
growth of creep voids

MDF =
ε∗f
εf
= exp

[

p
(

1−
σ1
σe

)

+ q
(

0.5 − 1.5
σm
σeq

)]

(1.3)

where σ1 is the principal stress, and p and q are material coefficients.
For the MDF model based on physical mechanisms, different mechanisms such as cavity

growth (Rice and Tracey, 1969; McClintock, 1968; Cocks and Ashby, 1980) and cavity nucleation
(Spindler, 2004a,b) have been discussed. Typically, Cocks and Ashby (1980) proposed a creep
model based on micromechanical consideration of the void growth and coalescence and extended
it to multiaxial stress states as well as the most notable Cocks-Ashby MDF models

MDF =
ε∗f
εf
= sinh

(2

3
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)/

sinh
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2
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n+ 0.5

σm
σeq

)

(1.4)

where n is the steady-state creep exponent. Alang and Nikbin (2018) and Spindler et al. (2001)
also proposed other (semi) empirical models, which may be also suitable for different conditions.
Due to perfect establishment and application at the grain size level, the Cocks-Ashby MDF
has been widely used to estimate the multiaxial creep ductility during simulation or estimation
of creep damage (Wen and Tu, 2014; Yatomi and Tabuchi, 2010; Wu et al., 2018b,c,d) and
creep cracking life (Davies, 2006; Wu et al., 2018a,e, 2019, 2020). Nevertheless, the Cocks-Ashby
MDF may conservatively predict multiaxial creep ductility under some conditions. Thus, Wen et
al. (2014) developed another purely empirical Wen-Tu MDF based on the Cocks-Ashby MDF ,
which could more effectively estimate the experimental results

MDF =
ε∗f
εf
= exp

(2

3

n− 0.5

n+ 0.5)

)/

exp
(

2
n− 0.5

n+ 0.5

σm
σeq

)

(1.5)

However, the above models are approximate solutions of the theoretical model based on the
power-law creep growth of grain-boundary cavities theory, which will be explained in detail in
Section 2, and there is a large conservation under some conditions, so it is necessary to establish
a more accurate multiaxial ductility factor based on the creep cavity growth model. Therefore,
the critical task of the present study is to develop a more accurate MDF based on the grain
boundary void growth model.

2. Power-law creep regime based on growth of grain-boundary cavities

Experimental morphology from different steels of creep crack growth has indicated that creep
voids or cavities mainly nucleate and grow on grain boundary facets (especially when a tensile
stress is perpendicular to the facets), then the cavities may be coalescing to form a grain-size
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microcrack, and finally the coalescence of microcracks leads to creep crack propagation (Tan et
al., 2013; Wen and Tu, 2014; Wen et al., 2016; You and Lee, 1996; Al-Rifaie and Sumelka, 2019;
Al-Rifaie et al., 2021).

Cocks and Ashby (1980) proposed an approximate method to calculate the growth of grain-
-boundary cavities by a power-law creep under multiaxial stress states. In this theory, the cavity
growth was estimated by a volume change of the cylinder containing a void, and some strict
assumptions should be met, such as grain-boundary cavities grow by a power-law creep. The
creep rate is independent of hydrostatic pressure, the grain boundaries and take a relative rigid-
-body displacement, width of the cylinder is larger than its thickness, and it is constrained by
the surrounding material to contract laterally, the voids stay spherical during the creep process,
the material is incompressible and its total volume does not change.

The problem then arises with calculation of the volume change in the cylinder containing
voids, since they cause the cavities to grow.

A detailed view of a cylinder containing a void is shown in Fig. 1, in which d is the grain
size, rh is the void radius, 2l is the voids distance, 2w is a calculation bound, σa is the axial
stress in the cylinder and T is the superimposed triaxial stress.

Fig. 1. Grain-boundary cavities growth by a power-law creep under multiaxial stress states

Cocks and Ashby (1980) established the upper bound for the axial strain rate ε̇ss for uniaxial
stress by using the energy principles

1

1− fn

dfh
dt
= ε̇ss

[ 1

(1− fh)n+1
− 1
]

(2.1)
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where fh is the area fraction of holes on the grain boundary, fw = r
2
h/l
2, ε̇ss is the steady

creep rate in the absence of voids. And for a multiaxial stress condition, the axial strain rate is
described as

dfh
dt
= ε̇ss

fh
fw

[

√

(1 +G)n+1

(1− fw)n
− (1− fw)

]

(2.2)

where fw is an area fraction entering the bound calculation, fw = r
2
h/w

2, and G is a stress-state
parameter defined by

G = 3
( n

n+ 1

1− fw
ln fw

T

σa

)2
(2.3)

The optimum value of fw was found by minimizing dfh/dt with respect to fw, with the
constraint that fw cannot be less than fh. The unconstrained optimum value was found using
the Newton-Raphson method.
Be aware of that it is difficult to directly obtain the relationship between the void growth

rate and stress triaxiality, and to make the predicting results more practical. Cocks and Ashby
(1980) fitted a semi-empirical equation to the curves of Fig. 2. It was fitted by a result which
closely resembled that for a imple uniaxial tension condition, Eq. (2.1), namely

dfh
dt
=
ε̇ss
α

[ 1

(1− fh)n
− (1− fh)

]

(2.4)

where α is a stress-state parameter defined by

α = sinh−1
[2(n− 0.5)

n+ 0.5

σm
σeq

]

(2.5)

As expected, cavity growth rates are increasing with the increasing stress triaxiality. It is
also observed from Fig. 5 that the results are not well fitted when the triaxiality σm/σeq < 0.8
or creep exponent n < 3. This is mainly because the most weight is artificially given to the
predicting results at high stress triaxiality in the Cocks and Ashby fitting process. To resolve
this conflict, Wen and Tu (2014) proposed another approximate model formulated as

α =
[

2− 0.5
( 1

5n

)n−1]/[2(n − 0.5)

n+ 0.5

σm
σeq

]

(2.6)

In the case of simple tension, substituting σm/σeq = 1/3 into Eq. (2.5) or Eq. (2.6) yields
the void growth rate under the uniaxial condition with α0.
Here, we try to propose a new formula for describing the relationship between the parameter α

and triaxiality σm/σeq, which is built by fitting the theoretical results.
First, the variations of αtrue against triaxiality σm/σeq for different n values are obtained

from Eq. (2.4) and Eq. (2.2)

αtrue =
[ 1

(1− fh)2
− (1− fh)

]

/

{

fh
fw

[

√

(1 +G)n+1

(1− fw)n
− (1− fw)

]}

(2.7)

Moreover, the theoretical data of αtrue could be obtained by re-arranging the results from
Fig. 3, then the curves of lnαtrue against σm/σeq with different n can be described in Fig. 2.
It can be found that αtrue decreases as n is increasing, and the difference between the

curves is unobvious when n is larger than 6. Besides, it is concluded that with the increasing
stress triaxiality σm/σeq, the curves of lnαtrue against σm/σeq are rapidly decreasing when
σm/σeq is smaller than 1.5, while it becomes smooth when σm/σeq is larger than 1.5. By fitting
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Fig. 2. Variation of the stress-state parameter αtrue against σm/σeq under different n values

the relationship between the parameter αtrue and stress triaxiality for different n values, it is
indicated that all of the curves could be expressed by a similar type of mathematical expression,
and the fitting equation is expressed as follows using the parameter αWu

lnαWu =
[

a+ b
(σm
σeq

)c]
/

[

d+
(σm
σeq

)c]

(2.8)

or expressed by

αWu = exp

{

[

a+ b
(σm
σeq

)c]
/

[

d+
(σm
σeq

)c]
}

(2.9)

where a, b, c, d are all parameters related to n, which can be also correlated by the following
formula by using coefficients ai, bi, ci, di. Perfect fitting performance is also found here, and the
coefficient of determination R-square is larger than 0.999. These parameters could be obtained
directly from Table 1

a, c =
ai + bin

1 + cin+ din2
i is represented by a or c

b, d = aib
1

n

i n
ci i is represented by b or d

(2.10)

Table 1. The details of fitting coefficients (a, b, c, d) between above coefficients against n values

Coef. 1
Coefficient 2

ai bi ci di

a 0.020863 −0.51239 0.215807 −0.00294

b 0.090558 0.557567 0.57484 –

c −2.15624 −0.36378 0.227893 0.000304

d 0.30566 0.382147 −0.19855 –

Then the parameter αWu can be characterized by combining Eqs. (2.9) and (2.10), which is
related to the stress triaxiality σm/σeq and n values
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αWu = exp
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(2.11)

Figure 3 compares the predictions and true values of α for n = 18 and n = 20, where these
two conditions are not considered in the above fitting process, so the comparison between these
two conditions and predictions can effectively verify the accuracy of αWu model in predicting
the parameter α.

Fig. 3. Comparison between predictions of αWu and true values of α with n = 18 and n = 20

Finally, the normalized hole growth rate, ln[(dfh/dt)/(1/ε̇ssfh)] for different n is compared
by using different α models (i.e. Cocks-Ashby model in Eq. (2.5), Wen-Tu model in Eq. (2.6)
and Wu model in Eq. (2.11)), as shown in Fig. 4. The Cocks-Ashby approximate model shows
large conservativeness when n = 1, σm/σeq is smaller than 0.5 and n is larger than 5. The
Wen-Tu model is relatively more accurate than the Cocks-Ashby approximate model at n = 1
and small values of σm/σeq, but its prediction is still much too conservative when n is larger
than 5. Apparently, compared with the Cocks-Ashby approximate model and Wen-Tu model, the
proposed model (Wu model) is perfectly suitable to predict theoretical data of the hole growth
rate no matter how the stress triaxiality σm/σeq or creep exponent n varies. The predictions of
Wu model (solid line) nearly coincide with the theoretical data (dash line). Especially, there is
a significant improvement for the predicting accuracy when σm/σeq < 0.5 and creep exponent
n > 5 compared with other models.
The time to fracture at a constant stress is generally obtained by integrating the creep voids

growth rate between the limits, and the creep failure strain could be simply assumed by the
ratio of the time to fracture and the steady creep rate in absence of voids. And then there are
two conditions for assuming the time to failure: one is using theoretical differential equations,
the other is using approximate or fitting equations.
The first is using the theoretical differential equations.
To get the creep failure strain under the uniaxial loading condition, differential Eq. (2.1) can

be integrated between the limits

fh = fi at t = 0

fh = fc0 at t = tc0
(2.12)

where fi is the initial area fraction of the cavities, which is thought to be fi ≪ 1, fc0 is the area
fraction of the cavities at which the linkage occurs, which is taken to be fc0 = 0.25 (Wen and
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Fig. 4. Comparison of predictions and theoretical results of the creep voids growth rate

Tu, 2014). And tc0 is the time to coalescence. The result for a constant stress is an equation for
the failure time

tc0 =
1

ε̇ss(n+ 1)
ln
1− (1− fc)

n+1

1− (1− fi)n+1
(2.13)

Then the creep failure strain under a uniaxial loading condition is

εf = ε̇sstc0 =
1

n+ 1
ln
1− (1− fc)

n+1

1− (1− fi)n+1
(2.14)

To get the creep failure strain under multiaxial loading conditions, differential Eq. (2.2) can
be integrated between the limits

fh = fi at t = 0

fh = fc at t = tc
(2.15)

where tc is the time to coalescence.

For theoretical differential Eq. (2.2) integrated between the above limits, the time to failure
could be expressed by

tc =
fw
ε̇ss
ln
fc
fi

/[

√

(1 +G)n+1

(1− fw)n
− (1− fw)

]

(2.16)

Then, the creep failure strain under multiaxial loading conditions is calculated as

ε∗f = ε̇sstc = fw ln
fc
fi

/[

√

(1 +G)n+1

(1− fw)n
− (1− fw)

]

(2.17)

Finally, the multiaxial ductility factor (MDF ) can be defined as

MDF =
ε∗f
εf
=

fw ln
fc
fi

ln 1−(1−fc)
n+1

1−(1−fi)n+1

/

[

√

(1 +G)n+1

(1− fw)n
− (1− fw)

]

(2.18)

In this formula, it is found that except for stress triaxiality σm/σeq, the initial area fraction of
the cavities fi also affects MDF , which will be studied in the following Section.
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The other condition for assuming the time to failure is using simplified differential equations.
For the multiaxial loading condition, differential Eq. (2.5) can be integrated between the limits,
the time to failure could be expressed by

tc =
α

ε̇ss(n+ 1)
ln
1− (1− fc)

n+1

1− (1− fi)n+1
(2.19)

The creep failure strain under multiaxial loading conditions is described as

ε∗f = ε̇sstc =
α

n+ 1
ln
1− (1− fc)

n+1

1− (1− fi)n+1
(2.20)

For the uniaxial condition, the void growth rate is described as α0 by substituting σm/σeq = 1/3
into Eq. (2.6). Hence, similarly, the time to failure under this condition is characterized by

tc0 =
α

ε̇ss(n+ 1)
ln
1− (1− fc)

n+1

1− (1− fi)n+1
(2.21)

The creep failure strain under uniaxial loading conditions is calculated by

εf = ε̇sstc0 =
α

n+ 1
ln
1− (1− fc)

n+1

1− (1− fi)n+1
(2.22)

Finally, the MDF can be re-defined as

MDF =
ε∗f
εf
=
α

α0
(2.23)

In our study, according to the new αWu proposed in Eq. (2.12), the modified MDF is de-
scribed as

MDFWu =
ε∗f
εf
=
αWu
αWu0

=
exp
{[

a+ b
(

σm
σeq

)c]/[

d+
(

σm
σeq

)c]}

exp
{[

a+ b
(

1
3

)c]/[

d+
(

1
3

)c]} (2.24)

where a, b, c, d are all parameters related to n, which are described above.
Figure 5 compares MDF results for different predicting models and theoretical data with

varied values of fi. With an increase of fi, the curves of MDF are descended, and these curves
are almost coincident when fi < 10

−4. The Wu model shows a perfect coincidence with the
theoretical results when n is small, while both the Cocks-Ashby and Wen-Tu models are con-
servative. As the creep power law exponent n increases, the difference between Wu model and
theoretical results becomes obvious, especially when the stress triaxiality is smaller than 1. This
is mainly caused by simplification using the creep void growth rate with α0 under the uniaxial
tension condition. Compared to the theoretical uniaxial creep void growth rate in Eq. (2.3),
α0 is not equal to 1 in the simplified creep void growth rate Eq. (2.7), and this difference will
be enlarged at high n values. Besides, for large n, the difference between Wu and Wen-Tu mod-
els is decreased, and the predictions of Wen-Tu model at large n may be overestimated when
σm/σeq > 1. Due to relatively poor predictions of these models at large n, a new model for
predicting MDF should be proposed.
Therefore, a fitting formula for MDF is obtained by fitting the theoretical results of MDF

with fi = 10
−4, because the curves of MDF are almost coincident when fi < 10

−4.
The theoretical results of lnMDF against σm/σeq with fi = 10

−4 for different n are compared.
All of the curves could be well fitted by the following equation (WM means modified Wu model)

lnMDFWM =
a+ b

(

σm
σeq

)c

d+
(

σm
σeq

)c MDFWM = exp

[

a+ b
(

σm
σeq

)c

d+
(

σm
σeq

)c

]

(2.25)
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Fig. 5. Comparison of predictions and theoretical results of MDF

where a, b, c, d are parameters related to the creep power exponent n, and the following expres-
sion could be established

a, b, c =
ai + bin

1 + cin+ din2
i is represented by a, b, c

d = ai + bi + c
n
i + din i is represented by d

(2.26)

The related parameters are summarized in Table 2.

Table 2. Fitting parameters of above parameters against n values

Coef. 1
Coefficient 2

ai bi ci di

a 0.037707 −0.51284 0.228236 −0.00278

b −0.00624 0.071408 0.085232 −8.17E-04

c −2.25401 −0.49529 0.29565 −3.88E-04

d 0.194207 −0.17086 0.375464 −0.00112

To further validate the suitability of the modified Wu (WM) model, the MDF for n = 8,
n = 15, n = 18 and 20 are also compared between different models in Fig. 6. The predictions from
the WM model (black solid line) are quite accurate compared to the theoretical data (scatters
data), while the other predictions are far below the theoretical data when σm/σeq < 0.5. Note
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that n = 18 and 20 conditions are not considered in the above fitting process, so the comparison
could effectively support the conclusion that the WM model could be the most competitive
theory in assessing the MDF .

Fig. 6. Comparison of predictions and theoretical results of MDF

Figure 7 shows the influence of stress triaxiality on the multiaxial ductility factor. The data
for steels of the pipe and rotor are collected from Wichtmann (2002), and the data for C-Mn steel
at 360◦C from Yatomi et al. (2004), 316H at 550◦C (Wen and Tu, 2014) and for 316 type steel
at 600◦C (Spindler, 2004b). As presented in Fig. 7, the Cocks-Ashby model may underestimate
the multiaxial creep ductility at high stress triaxiality, while the Wen-Tu and Wu models give
more closer results to the experimental data and may become close to the average results of
tested data. The WM model gives more improved solutions at small stress triaxiality while more
conservative predictions at higher stress state. This is due to theoretical solutions of the WM
model, which indeed have these variation laws as observed in Fig. 7, and which may be larger
than the predictions of the other three models at low stress triaxiality but may be less than
these predictions at high stress triaxiality. In general, it could be said that the new Wu and WM
models could give better predictions for the multiaxial ductility factor compared to the previous
models. The WM model may give a more precise upper bound of MDF for pipe and rotors steel
as well as for 316 steel at 600◦C, while WM predictions are also effectively consistent with the
average experimental results for C-Mn steel at 360◦C and 316H at 550◦C.
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Fig. 7. Comparison of predictions and experimental data of MDF : (a) for pipe and rotors, (b) for C-Mn
steel at 360◦C, (c) for 316H at 550◦C, (d) for 316H(L) at 600◦C

Figure 8 compares the predictions by using different models and experimental data of the
multiaxial ductility factor. The experimental data under the same stress triaxiality are simplified
by calculating the geometric mean values. It could be found for these limited data for different
materials and conditions, all predictions of the Cocks-Ashby model could be located within the
range with a scatter factor of 2, and for the Wen-Tu and Wu models, this error band is with a
scatter factor of 1.8 and 1.6, respectively. For the WM model, the predictions are located within
the range with a scatter factor of 1.4. This demonstrates the accuracy of the WM model in
predicting MDF based on growth of grain-boundary cavities by a power-law creep.

3. Conclusion

In this study, the multiaxial ductility factor was analyzed and two novel predicting models were
developed based on the power-law creep grain-boundary cavities growth theory under multiaxial
stress states proposed by Cocks and Ashby. The details are summarized as follows.

• The predicting model of stress-state parameter α was revised by using an empirical equa-
tion denoted as αWu, and the relationship between uniaxial and multiaxial creep failure
strain could be obtained, then an empirical multiaxial ductility factor MDFWu was built
by using αWu.
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Fig. 8. Comparison of predictions and experimental data of MDF : (a) for Cocks-Ashby model, (b) for
Wen-Tu model, (c) for Wu model, (d) for WM model

• The theoretical expression for multiaxial ductility factor MDF could also be established.
By fitting theoretical curves of MDF against stress traiaxiality σm/σeq, another predicting
model MDFWM could be developed.

• Predictions of these two novel multiaxial ductility factor models as well as C-A and W-T
models were compared with experimental data. The accuracy of MDFWu and MDFWM
models was obviously enhanced, especially for the MDFWM with a scatter factor of
only 1.4.
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