Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Weak value amplification is a measurement technique where small quantum mechanical interactions are amplified and manifested macroscopically in the output of a measurement apparatus. It is shown here that the linear nature of weak value amplification provides a straightforward comparative methodology for using the value of a known small interaction to estimate the value of an unknown small interaction. The methodology is illustrated by applying it to quantify the unknown size of an optical Goos-Hänchen shift of a laser beam induced at a glass/gold interface using the known size of the shift at a glass/air interface.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
393--401
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., wzory
Twórcy
autor
- Electromagnetic and Sensor Systems Department, 18444 Frontage Road Suite 327, Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA 22448-5161, USA
autor
- Electromagnetic and Sensor Systems Department, 18444 Frontage Road Suite 327, Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA 22448-5161, USA
Bibliografia
- [1] Aharonov, Y., Albert, D., Casher, A., Vaidman, L. (1986). New Techniques and Ideas in Quantum Measurement Theory. New York: New York Academy of Science.
- [2] Aharonov, Y., Albert, D., Vaidman, L. (1988). How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351-1354.
- [3] Aharonov, Y., Vaidman, L. (1990). Properties of a quantum system during the time interval between two measurements. Phys. Rev. A, 42, 11-20.
- [4] Ritchie, N., Storey, J., Hulet, R. (1991). Realization of a measurement of a “weak value”. Phys. Rev. Lett., 66, 1107-1110.
- [5] Parks, A., Cullin, D., Stoudt, D. (1998). Observation and measurement of an optical Aharonov-Albert- Vaidman effect. Proc. R. Soc. Lond. A, 454, 2997-3008.
- [6] Wang, Q., Sun, F., Zhang, Y., Jian, L., Huang, Y. Guo, G. (2006). Experimental demonstration of a method to realize weak measurement of the arrival time of a single photon. Phys. Rev. A, 73, 023814.
- [7] Hofmann, H. (2011). Uncertainty limits for quantum metrology obtained from the statistics of weak measurements. Phys. Rev. A, 83, 022106.
- [8] Hayat, A., Feizpour, A., Steinberg, A. (2011). Enhancing metrological sensitivity by weak measurements. SPIE Newsroom, DOI:10.1117/2.1201112.004014.
- [9] Ferrie, C., Combes, J. (2014). Weak Value Amplification is Suboptimal for Estimation and Detection. Phys. Rev. Lett., 112, 040406.
- [10] Jordan, A., Martínez-Rincón, J., Howell, J. (2014). Technical Advantages for Weak-Value Amplification: When Less Is More. Phys. Rev. X, 4, 011031.
- [11] Knee, G., Gauger, E. (2014). When Amplification with Weak Values Fails to Suppress Technical Noise. Phys. Rev. X, 4, 011032.
- [12] Alves, G., Escher, B., Filho, R., Zagury, N., Davidovich, L. (2014). Weak-value amplification as an optimal metrological protocol. arXiv:1410.7415v1 [quant-ph]
- [13] Zhang, L., Datta, A., Walmsley, I. (2015). Precision Metrology Using Weak Measurements. Phys. Rev. Lett., 114, 210801.
- [14] Hosten, O., Kwiat, P. (2008). Observation of the Spin Hall Effect of Light via Weak Measurements. Science, 319, 787.
- [15] Hoffman, H. (2010). On the estimation of interaction parameters in weak measurements. arXiv:1012.007v1 [quant-ph]
- [16] Starling, D., Dixon, P., Jordan, A., Howell, J. Precision frequency measurements with interferometric weak values. Phys. Rev. A, 82, 063822.
- [17] Howell, J., Starling, D., Dixon, P., Vudyasetu, P., Jordan, A. (2010). Interferometric weak value deflections: Quantum and classical treatments. Phys. Rev. A, 81, 033813.
- [18] Pfeifer, M., Fischer, P. (2011). Weak value amplified optical activity measurements. OPTICS EXPRESS, 19, 16508.
- [19] Parks, A., Spence, S. (2012). Weak value amplification of an optical Faraday differential refraction effect. APPLIED OPTICS, 51, 3364-3369.
- [20] Gorodetski, Y., Bliokh, K., Stein, B., Genet, C., Shitrit, N., Kleiner, V., Hasman, E., Ebbesen, T. (2012). Weak measurements of Light Chirality with a Plasmonic Slit. Phys. Rev. Lett., 109, 013901.
- [21] Hoffman, H., Goggin, M., Almeida, M., Barbieri, M. (2012). Estimation of a quantum interaction parameter using weak measurements: Theory and experiment. Phys. Rev. A, 86, 040102(R).
- [22] Viza, G., Martínez-Rincón, J., Alves, G., Jordan, A., Howell, J. (2015). Experimentally quantifying the advantages of weak-value-based metrology. Phys. Rev. A, 92, 032127.
- [23] Parks, A., Gray, J. (2011). Variance control in weak value measurement pointers. Phys. Rev. A, 84, 012116.
- [24] Spence, S., Parks, A. (2012). Experimental evidence for a dynamical non-locality induced effect in quantum interference using weak values. Found. Phys., 42, 803-815.
- [25] Renard, R. (1964). Total reflection: A new evaluation of the Goos-Hänchen shift. J. Opt. Soc. Am., 54, 1190-1197.
- [26] Jayaswal, G., Mistura, G., Merano, M. (2013). Weak measurements of the Goos-Hänchen shift. Opt. Lett., 38, 1232-1234.
- [27] Yin, X., Hesselink, L., Liu, Z., Fang, N., Zhang, X. (2004). Large positive and negative lateral optical beam displacements due to surface plasmon resonance. Appl. Phys. Lett., 85, 372-374.
- [28] Duck, I., Stevenson, P., Sudarshan, E. (1989). The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100. Phys. Rev. D, 40, 2112-2117.
- [29] Parks, A., Spence, S., Gray, J. (2014). Exact pointer theories for von Neumann projector measurements of pre- and postselected and preselected-only quantum systems: statistical mixtures and weak value persistence. Proc. R. Soc. A, 470, 20130651.
- [30] Wu, S., Li, Y. (2011). Weak measurements beyond the Aharonov-Albert-Vaidman formalism. Phys. Rev. A, 83, 052106.
- [31] Nakamura, K., Nishizawa, A., Fujimoto, M. (2012). Evaluation of weak measurements to all orders. Phys. Rev. A, 85, 012113.
Uwagi
EN
This work was supported by a grant from the Naval Surface Warfare Center Dahlgren Division’s In-house Laboratory Independent Research Program.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8dfa015-81a1-4017-9f13-7d03a8fea840