PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A numerical scheme for time-fractional fourth-order reaction-diffusion model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In fractional calculus, the fractional differential equation is physically and theoretically important. In this article an efficient numerical process has been developed. Numerical solutions of the time fractional fourth order reaction diffusion equation in the sense of Caputo derivative is obtained by using the implicit method, which is a finite difference method and is developed by increasing the number of iterations. The advantage of the implicit difference scheme is unconditionally stable. The stability analysis and convergency have been proven. A numerical example has been presented, and the validity of the method is supported by tables and graphics.
Rocznik
Strony
15--25
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Mathematics, Mugla Sitki Kocman University, Turkey
Bibliografia
  • [1] Guo, S., Mei, L., Zhang, Z., Chen, J., He, Y., & Li, Y. (2019). Finite difference/Hermite-Galerkin spectral method for multi-dimensional time-fractional nonlinear reaction-diffusion equation in unbounded domains. Applied Mathematical Modelling, 70, 246-263.
  • [2] Labora, D.C., Lopes, A.M., & Machado, J.T. (2020). Time-fractional dependence of the shear force in some beam type problems with negative Young modulus. Applied Mathematical Modelling, 80, 668-682.
  • [3] Gu, Y., & Sun, H. (2020). A meshless method for solving three dimensional time fractional diffusion equation with variable-order derivatives. Applied Mathematical Modelling, 78, 539-549.
  • [4] Dabiri, A., & Butcher E.A. (2018). Numerical solution of multi-order fractional differential equations with multiple delays via spectra collocation methods. Applied Mathematical Modelling, 56, 424-448.
  • [5] Yuttanan, B., & Razzaghi, M. (2019). Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Applied Mathematical Modelling, 70, 350-364.
  • [6] Myers, T.G., & Charpin, J.P. (2004). A mathematical model for atmospheric ice accretion and water flow on a cold surface. International Journal of Heat and Mass Transfer, 47(25), 5483-5500.
  • [7] Myers, T.G., Charpin, J.P., & Chapman, S.J. (2002). The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface. Physics of Fluids, 14(8), 2788-2803.
  • [8] Halpern, D., Jensen, O., & Grotberg, J. (1988). A theoretical study of surfactant and liquid delivery into the lung. The Journal of Applied Physiology, 85(1), 333-352.
  • [9] Tariq, H., & Akram G. (2017). Quintic spline technique for time fractional fourth-order partial differential equation. Numerical Methods for Partial Differential Equations, 33(2), 445-466.
  • [10] Toga, A.W. (1998). Brain Warping. 1st ed., Elsevier.
  • [11] Mémoli, F., Sapiro, G., & Thompson, P. (2004). Implicit brain imaging. NeuroImage, 23, 179-188.
  • [12] Cao, Y., Nikan, O., & Avazzadeh, Z. (2023). A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels. Applied Numerical Mathematics, 183, 140-156.
  • [13] Nikan, O., Arabshai, S., & Jafari, H. (2021). Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete and Continuous Dynamical Systems-S, 14(10), 1-17, 3685-3701.
  • [14] Golbabai, A., Nikan O., & Nikazad, T. (2019). Numerical ınvestigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media. International Journal of Applied and Computational Mathematics, 5(50), 1-22.
  • [15] Du, Y., Liu, Y., Li, H., Fang, Z., & He, S. (2017). Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. Journal of Computational Physics, 344, 108-126.
  • [16] Liu, Y., Li, H., Fang, Z., & He, S. (2014). A mixed finite element method for a time-fractional fourth-order partial differential equation. Applied Mathematics and Computation, 243, 703-717.
  • [17] Abbaszadeh M., & Dehghan, M. (2020). Direct meshless local Petrov-Galerkin (DMLPG) method for time-fractional fourth-order reaction-diffusion problem on complex domains. Computers & Mathematics with Applications, 79, 876-888.
  • [18] Zhuang, P., & Liu, F. (2007). Finite difference approximation for two dimensional time fractional diffusion equation. Journal of Algorithms & Computational Technology, 1, 1-15.
  • [19] Tadjeran, C., & Meerschaert, M.M. (2007). A second order accurate numerical method for the two-dimensional fractional diffusion equation. Journal of Computational Physics, 220, 813-823.
  • [20] Meerschaert, M.M., Scheffler, H.P., & Tadjeran C. (2006). Finite difference methods for two-dimensional fractional dispersion equation. Journal of Computational Physics, 211, 249-261.
  • [21] Dehghan, M. (1999). Implicit locally one-dimensional methods for two-dimensional diffusion with a non-local boundary condition. Mathematics and Computers in Simulation, 49, 331-349.
  • [22] Chen, J., & Ge, Y. (2018). High order locally one dimensional methods for solving two-dimensional parabolic equation. Advances in Difference Equations, 361.
  • [23] Soori, Z., & Aminataei, A. (2018). Effect of the nodes near boundary points on the stability analysis of sixth-order compact finite difference ADI scheme for the two-dimensional time fractional diffusion-wave equation. Transactions of A. Razmadze Mathematical Institute, 172, 582-605.
  • [24] Kutluay, S., & Yağmurlu, N.M. (2012). The modified bi-quintic b-splines for solving the two dimensional unsteady burgers’ equation. Avrupa Bilim ve Teknoloji Dergisi, 1(2).
  • [25] Kutluay, S., & Yağmurlu, N.M. (2013). Derivation of the modified bi quintic b-spline base functions: an application to poisson equation. American Journal of Computational Mathematics, 3(1), 26-32.
  • [26] Nikan, O., Tenreiro Machado, J.A., & Golbabai, A. (2021). A numerical solution of time-fractional fourth-order reaction-diffusion model arising in composite environments. Applied Mathematical Modelling, 89, 819-836.
  • [27] Murio, D.A. (2008). Implicit finite difference approximation for time fractional diffusion equations. Computers & Mathematics with Applications, 56, 4, 1138-1145.
  • [28] Richtmyer, R.D., & Morton, K.W. (1967). Difference Methods for Initial-Value Problems. New York: İnterscience, Publisher.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8df3620-8ba4-40a9-b422-4aa0a519e634
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.