PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody indeksowe w analizie ryzyka procesowego

Identyfikatory
Warianty tytułu
EN
Index methods in process safety analysis
Języki publikacji
PL
Abstrakty
PL
Po wypadku w Flixborough (Anglia, 1974) prof. Trevor Kletz wprowadził ideę bezpieczeństwa inherentnego, która zasadniczo jest zorientowana na eliminowanie lub łagodzenie zagrożeń i ryzyk, niż na ich kontrolowanie [2,3]. Procesy inherentnie bezpieczne to takie, które umożliwiają wybaczanie błędów ludzkich oraz niedociągnięcia projektantów. Chociaż znacząca liczba omówionych metod i narzędzi, nawet metod komputerowego wspomagania projektowania (CAD), jest dostępna dla projektantów, to wciąż jest zauważalny brak integracji tych metod z oprogramowaniem CAD wykorzystywanym przez inżynierów procesów chemicznych. Pożądanym rozwiązaniem byłoby połączenie symulatorów procesów chemicznych z narzędziem, które zapewniałoby ocenę bezpieczeństwa inherentnego po zakończeniu symulacji procesowej. Dodatkowym wyzwaniem, które stoi przed inżynierią procesów inherentnie bezpiecznych jest brak jasno określonej procedury oceny bezpieczeństwa inherentnego. Zostało to wyróżnione jako jedno z trzech wyzwań stojących przed inżynierią, obok niedostępności takich wskaźników dla procesów biotechnologicznych i nanotechnologicznych oraz złożoności procesów dynamicznych [34].
EN
After the accident in Flixborough (England, 1974) prof. Trevor Kletz introduced the concept of inherent safety, which in general focus on elimination or attenuation of hazards and risks than on controlling them [2,3]. Inherently safer processes are those that know how to forgive human error and shortcomings of designers. Although a number of reviewed methods and tools, even computer-aided design (CAD) methods, is available for designers, there is still a substantial gap in integration of these methods with CAD software for chemical process engineers. The ideal solution would be to combine process simulator with a tool that provide assessment of inherent safety after completing the process simulation. An additional challenge, which is in this area, is the apparent lack of clearly defined way of inherent safety assessment. This has been marked as one of the three challenges facing the engineering of inherently safer processes, in addition to the unavailability of such indicators for biotechnological and nanotechnological processes, and the complexity of dynamic processes.
Czasopismo
Rocznik
Tom
Strony
1151--1157, CD1
Opis fizyczny
Bibliogr. 34 poz., tab.
Twórcy
  • Politechnika Poznańska, Wydział Technologii Chemicznej, Instytut Technologii i Inżynierii Chemicznej
autor
  • Politechnika Poznańska, Wydział Technologii Chemicznej, Instytut Technologii i Inżynierii Chemicznej
autor
  • Politechnika Poznańska, Wydział Technologii Chemicznej, Instytut Technologii i Inżynierii Chemicznej
Bibliografia
  • [1]. Crowl D.A., Louvar J.F., Chemical Process Safety. Fundamentals with Applications, wydanie 3, Pearson Education INC, Boston, USA, 2011.
  • [2]. Kletz T.P., Amyotte P., Process Plants. A Handbook for Inherently Safer Design, wydanie 2, CRC Press, Boca Raton, USA, 2010.
  • [3]. Kletz T., What you don’t have, can't leak, Chemistry and Industry, 1978, s. 287.
  • [4]. Srinivasan R., Kraslawski A., Application of the TRIZ creativity enhancement approach to design of inherently safer chemical processes, Chemical Engineering and Processing: Process Intensification, 45, 2006, s. 507.
  • [5]. Nishida N., Stephanopoulos G., Westerberg A.W., A Review of Process Synthesis, AICHE Journal, 27, 1981, s. 321.
  • [6]. Smith R., Chemical Process Design and Integration, John Wiley & Sons Ltd, Chichester, Wielka Brytania, 2005.
  • [7]. Towler G., Sinnott R., Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design, wydanie 2., Elsevier Ltd., 2013.
  • [8]. Douglas J.M., Conceptual design of chemical processes, McGraw-Hill, 1988.
  • [9]. Mitkowski P.T., Computer aided design and analysis of reaction-separation and separation-separation systems, PhD thesis, Technical University of Denmark, 2008.
  • [10]. Zondervan E., Nawaz M., de Haan A.B., Woodley J.M., Gani R., Optimal design of a multi-product biorefinery system, Computers and Chemical Engineering, 35, 2011, s. 1752.
  • [11]. Liu P., Pistikopoulos E.N., Li Z., An energy systems engineering approach to polygeneration and hydrogen infrastructure systems analysis & design, Chemical Engineering Transactions, 18, 2009, s. 373.
  • [12]. Suardin J., Mannan M.S., El-Halwagi M., The integration of Dow’s fire and explosion index (F&EI) into process design and optimization to achieve inherently safer design, Journal of Loss Prevention in the Process Industries, 20, 2007, s. 79.
  • [13]. Leong C.T., Shariff A.M., Process route index (PRI) to assess level of explosiveness for inherent safety quantification, Journal of Loss Prevention in the Process Industries, 22, 2009, s. 216.
  • [14]. Shariff A.M., Leong C.T., Zaini D., Using process stream index (PSI) to assess inherent safety level during preliminary design stage, Safety Science, 50, 2012, s. 1098.
  • [15]. Carvalho A., Gani R., Matos H., Design of sustainable chemical processes: Systematic retrofit analysis generation and evaluation of alternatives, Process Safety and Environmental Protection, 86, 2008, s. 328.
  • [16]. Mitkowski P.T., Bal S.K., Analysis of the protection layers versus analysis of the fault tree, Przemysł Chemiczny, 91, 2012, s. 2003.
  • [17]. Stoessel F., Thermal Safety of Chemical Processes. Risk Assessment and Process Design, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Niemcy, 2008.
  • [18]. Kletz T., Amyotte P., Process Plants: A Handbook for Inherently Safer Design, CRC Press, Boca Raton, USA, 2010.
  • [19]. Center for Chemical Process Safety, Inherently Safer Chemical Processes: A Life Cycle Approach, wydanie 2, John Wiley and Sons, Hoboken, NJ, USA, 2009.
  • [20]. American Institute of Chemical Engineers, Dow’s Fire & Explosion Index Hazard Classification Guide, wydanie 7., American Institute of Chemical Engineers, 1994.
  • [21]. American Institute of Chemical Engineers, Dow’s Chemical Exposure Index Guide, John Wiley & Sons, 2010.
  • [22]. Lewis D.J., Mond Fire, Explosion and Toxicity Index: A Development of the Dow Index, 13th An-nual Loss Prevention Symposium, Houston, New York, 1979.
  • [23]. Mannan S., Lees’ Loss Prevention in the Process Industries, wydanie 3, Elsevier Butterworth - Heinemann, 2005.
  • [24]. Khan F.I., Amyotte P.R., Integrated inherent safety index (I2SI): A tool for inherent safety evaluation, Process Safety Progress, 23, 2004, s. 136.
  • [25]. Heikkilä A.M., Inherent safety in process plant design, Helsinki University of Technology, 1999.
  • [26]. Mitkowski P.T., Analiza ryzyka w przemyśle chemicznym, Wydawnictwo Politechniki Poznańskiej, Poznań, 2012.
  • [27]. Khan F.I., Husain T., Abbasi S.A., Safety Weighted Hazard Index (SWeHI) A New, User-friendly Tool for Swift yet Comprehensive Hazard Identification and Safety Evaluation in Chemical Process Industries, Trans IChemE, 79 (2001) s. 65.
  • [28]. Shariff A.M., Leong C.T., Inherent risk assessment—A new concept to evaluate risk in preliminary design stage, Process Safety and Environmental Protection, 87, 2009, s. 371.
  • [29]. Shariff A.M., Zaini D., Toxic release consequence analysis tool (TORCAT) for inherently safer de-sign plant, Journal of Hazardous Materials, 182, 2010, s. 394.
  • [30]. Khan F.I., Abbasi S.A., Inherently safer design based on rapid risk analysis, Journal of Loss Pre-vention in the Process Industries, 11, 1998, s. 361.
  • [31]. Jensen N., Jørgensen S.B., Taking Credit for Loss Control Measures in the Plant with the Likely Loss Fire and Explosion Index (LL-F&EI), Process Safety and Environmental Protection, 85, 2007, s. 51.
  • [32]. Mohd A., Leong C.T., Zaini D., Using process stream index (PSI) to assess inherent safety level during preliminary design stage, Safety Science, 50, 2012, s. 1098.
  • [33]. Mitkowski P.T., Bal S.K., Integration of Fire and Explosion Index in 3D Process Plant Design Software, Chemical Engineering & Technology 38, 2015, s. 1212.
  • [34]. Srinivasan R., Natarajan S., Developments in inherent safety: A review of the progress during 2001–2011 and opportunities ahead, Process Safety and Environmental Protection 90, 2012, s. 389.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8de382d-ee1b-41b4-8ea5-da183405e574
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.