PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved vegetation parameterization for hydrological model and assessment of land cover change impacts on flow regime of the Upper Bhima basin, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the potential and applicability of variable infiltration capacity (VIC) hydrological model to simulate different hydrological components of the Upper Bhima basin under two different Land Use Land Cover (LULC) (the year 2000 and 2010) conditions. The total drainage area of the basin was discretized into 1694 grids of about 5.5 km by 5.5 km: accordingly the model parameters were calibrated at each grid level. Vegetation parameters for the model were prepared using temporal profile of Leaf Area Index (LAI) from Moderate-Resolution Imaging Spectroradiometer and LULC. This practice provides a methodological framework for the improved vegetation parameterization along with region-specific condition for the model simulation. The calibrated and validated model was run using the two LULC conditions separately with the same observed meteorological forcing (1996–2001) and soil data. The change in LULC has resulted to an increase in the average annual evapotranspiration over the basin by 7.8%, while the average annual surface runoff and baseflow decreased by 18.86 and 5.83%, respectively. The variability in hydrological components and the spatial variation of each component attributed to LULC were assessed at the basin grid level. It was observed that 80% of the basin grids showed an increase in evapotranspiration (ET) (maximum of 292 mm). While the majority of the grids showed a decrease in surface runoff and baseflow, some of the grids showed an increase (i.e. 21 and 15% of total grids— surface runoff and baseflow, respectively).
Czasopismo
Rocznik
Strony
697--715
Opis fizyczny
Bibliogr. 74 poz.
Twórcy
  • Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
autor
  • Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
Bibliografia
  • 1. Abdulla FA, Lettenmaier DP, Wood EF, Smith JA (1996) Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red River Basin. J Geophys Res 101:7449–7459. https://doi.org/10.1029/95JD02416
  • 2. Aggarwal SP, Garg V, Gupta PK et al (2012) Climate and LULC change scenarios to study its impact on hydrological regime. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XXXIX-B8:147–152. https://doi.org/10.5194/isprsarchives-xxxix-b8-147-2012
  • 3. Awotwi A, Yeboah F, Kumi M (2015) Assessing the impact of land cover changes on water balance components of White Volta Basin in West Africa. Water Environ J 29:259–267. https://doi.org/10.1111/wej.12100
  • 4. Babar S, Ramesh H (2015) Streamflow response to land use—land cover change over the Nethravathi River Basin, India. J Hydrol Eng 20:1–11. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001177
  • 5. Behera S, Panda RK (2006) Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process-based model. Agric Ecosyst Environ 113:62–72. https://doi.org/10.1016/j.agee.2005.08.032
  • 6. Biggs TW, Gaur A, Scott CA et al (2007) Closing of the Krishna Basin: Irrigation, streamflow depletion and macroscale hydrology, vol 111. IWMI. http://re.indiaenvironmentportal.org.in/files/RR111.pdf
  • 7. Chatterjee S, Krishna AP, Sharma AP (2014) Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environ Earth Sci 71:357–374. https://doi.org/10.1007/s12665-013-2439-3
  • 8. Chawla I, Mujumdar PP (2015) Isolating the impacts of land use and climate change on streamflow. Hydrol Earth Syst Sci 19:3633–3651. https://doi.org/10.5194/hess-19-3633-2015
  • 9. Chen Y, Li J, Xu H (2016) Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrol Earth Syst Sci 20:375–392. https://doi.org/10.5194/hess-20-375-2016
  • 10. Christensen N, Lettenmaier DP (2007) A multimodel ensemble approach to the assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrol Earth Syst Sci 11:1417–1434. https://doi.org/10.5194/hess-11-1417-2007
  • 11. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. https://doi.org/10.1016/0034-4257(91)90048-B
  • 12. Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) Exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour Res 20:682–690
  • 13. CWC (2012) Hydrologic observation station in India under Central Water Commission. http://www.cwc.nic.in/main/downloads/Hydrological_network_details_of_CWC.pdfAccessed 15 Jan 2018
  • 14. Dadhwal VK, Mishra N, Aggarwal SP (2010) Hydrological simulation of Mahanadi river basin and impact of land use/land cover change on surface runoff using a macro scale hydrological model. ISPRS TC VII Symp—100 years ISPRS, Vienna, Austria XXXVIII, pp 165–170
  • 15. Dwarakish GS, Ganasri BP (2015) Impact of land use change on hydrological systems: a review of current modelling approaches. Cogent Geosci 1:1–18. https://doi.org/10.1080/23312041.2015.1115691
  • 16. Fang X, Ren L, Li Q et al (2013) Hydrologic response to land use and land cover changes within the context of catchment-scale spatial information. J Hydrol Eng 18:1539–1548. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000482
  • 17. Fischer GF, Nachtergaele S, Prieler HT, van Velthuizen L, Verelst D, Wiberg (2008) Global agro-ecological zones assessment for agriculture (GAEZ 2008).IIASA, Laxenburg, Austria and FAO, Rome, Italy. http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/. Accessed 15 Jan 2018
  • 18. Franchini M, Pacciani M (1991) Comparative analysis of several conceptual rainfall-runoff models. J Hydrol 122:161–219. https://doi.org/10.1016/0022-1694(91)90178-K
  • 19. Gao H, Tang Q, Shi X et al (2009) Water budget record from variable infiltration capacity (VIC) model algorithm theoretical basis document. Department of Civil and the Environmental Engineering, University of Washington, Seattle, WA 98195. http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/References.shtml. Accessed 15 Jan 2018
  • 20. Garg KK, Bharati L, Gaur A et al (2012a) Spatial mapping of agricultural water productivity using the SWAT model in Upper Bhima catchment, India. Irrig Drain 61:60–79. https://doi.org/10.1002/ird.618
  • 21. Garg KK, Karlberg L, Barron J et al (2012b) Assessing impacts of agricultural water interventions in the Kothapally watershed, Southern India. Hydrol Process 26:387–404. https://doi.org/10.1002/hyp.8138
  • 22. Garg KK, Wani SP, Barron J et al (2012c) Up-scaling potential impacts on water flows from agricultural water interventions: opportunities and trade-offs in the Osman Sagar catchment, Musi sub-basin, India. Hydrol Process 27:3905–3921. https://doi.org/10.1002/hyp.9516
  • 23. Garg V, Aggarwal SP, Gupta PK et al (2017) Assessment of land use land cover change impact on hydrological regime of a basin. Environ Earth Sci 76:1–17. https://doi.org/10.1007/s12665-017-6976-z
  • 24. Gartley ML, George B, Davidson B et al (2009) Hydro-economic modelling of the Upper Bhima. In: 18th world IMACS/MODSIM congress, Cairns, Australia, pp 3831–3837
  • 25. Gosain AK, Rao S, Arora A (2011) Climate change impact assessment of water resources of India. Curr Sci 101:356–371
  • 26. Hydrology project, Ministry of Water Resources, Government of India. http://hydrology-project.gov.in. Accessed 29 Mar 2018
  • 27. Immerzeel WW, Droogers P (2008) Calibration of a distributed hydrological model based on satellite evapotranspiration. J Hydrol 349:411–424. https://doi.org/10.1016/j.jhydrol.2007.11.017
  • 28. Immerzeel WW, Gaur A, Zwart SJ (2008) Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agric Water Manag 95:11–24. https://doi.org/10.1016/j.agwat.2007.08.006
  • 29. Indian Water Resources Information System. Hydro observation data module. http://india-wris.nrsc.gov.in/HydroObservationStationApp.html. Accessed 15 Jan 2018
  • 30. Joshi S, Abdul Hakeem K, Raju PV et al (2014) Retrospective analysis of recent flood events with persistent high surface runoff from hydrological modelling. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XL-8:359–365. https://doi.org/10.5194/isprsarchives-xl-8-359-2014
  • 31. Khan HH, Khan A, Ahmed S, Perrin J (2011) GIS-based impact assessment of land-use changes on groundwater quality: study from a rapidly urbanizing region of South India. Environ Earth Sci 63:1289–1302. https://doi.org/10.1007/s12665-010-0801-2
  • 32. Li Z, Liu W, Zhang X, Zheng F (2009) Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J Hydrol 377:35–42. https://doi.org/10.1016/j.jhydrol.2009.08.007
  • 33. Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99:14415. https://doi.org/10.1029/94JD00483
  • 34. Liang X, Wood EF, Lettenmaier DP (1996) Surface soil moisture parameterization of the VIC-2L model: evaluation and modification. Glob Planet Change 13:195–206. https://doi.org/10.1016/0921-8181(95)00046-1
  • 35. Lohmann D, Nolte-Holube R, Raschke E (1996) A large-scale horizontal routing model to be coupled to land surface parameterization schemes. Tellus Ser Dyn Meteorol Oceanogr 48:708–721
  • 36. Lohmann D, Rashke E, Nijssen B, Lettenmaier DP (1998) Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol Sci J 43:131–141. https://doi.org/10.1080/02626669809492107
  • 37. Lørup JK, Refsgaard JC, Mazvimavi D (1998) Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: case studies from Zimbabwe. J Hydrol 205:147–163. https://doi.org/10.1016/S0168-1176(97)00311-9
  • 38. Matheussen B, Kirschbaum RL, Goodman IA et al (2000) Effects of land cover change on streamflow in the interior Columbia River Basin (the USA and Canada). Hydrol Process 14:867–885. https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2
  • 39. Maurer EP, O’Donnell GM, Lettenmaier DP, Roads JO (2001a) Evaluation of NCEP/NCAR reanalysis water and energy budgets using macroscale hydrologic model simulations. In: Land surface hydrology, meteorology, and climate: observations and modeling, pp 137–158. https://doi.org/10.1029/WS003p0137
  • 40. Maurer EP, O’Donnell GM, Lettenmaier DP, Roads JO (2001b) Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. J Geophys Res 106:17841. https://doi.org/10.1029/2000JD900828
  • 41. Mishra A, Kar S, Singh VP (2007) Prioritizing structural management by quantifying the effect of land use and land cover on watershed runoff and sediment yield. Water Resour Manag 21:1899–1913. https://doi.org/10.1007/s11269-006-9136-x
  • 42. Moriasi DN, Arnold JG, Van Liew M et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. https://doi.org/10.13031/2013.23153
  • 43. Myneni R, Knyazikhin Y, Park T (2015) MCD15A3H MODIS/Terra + Aqua Leaf Area Index/FPAR 4-day L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAC. http://doi.org/10.5067/MODIS/MCD15A3H.006. Accessed 15 Jan 2018
  • 44. NASA JPL (2013) NASA shuttle radar topography mission global 1 arc-second DEM. NASA LP DAAC. https://doi.org/10.5067/measures/srtm/srtmgl1.003. Accessed 15 Jan 2018
  • 45. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • 46. Nie W, Yuan Y, Kepner W et al (2011) Assessing impacts of landuse and landcover changes on hydrology for the upper San Pedro watershed. J Hydrol 407:105–114. https://doi.org/10.1016/j.jhydrol.2011.07.012
  • 47. Nijssen B, Lettenmaier DP, Liang X et al (1997) Streamflow simulation for continental-scale river basins. Water Resour Res 33:711–724. https://doi.org/10.1029/96WR03517
  • 48. Nijssen B, Schnur R, Lettenmaier DP (2001) Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J Clim 14:1790–1808. https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2
  • 49. Nossent J, Bauwens W (2012) Application of a normalized Nash–Sutcliffe efficiency to improve the accuracy of the Sobol’ sensitivity analysis of a hydrological model. https://presentations.copernicus.org/EGU2012-237_presentation.pdf. Accessed 15 Jan 2018
  • 50. NRSC (2011) National land use and land cover mapping using multi-temporal Awifs data. Interim report seventh cycle (2010–11). http://bhuvannoeda.nrsc.gov.in/gis/thematic/tools/document/LULC250/1011.pdf. Accessed 15 Jan 2018
  • 51. USGS Earth Resources Observation and Science Center. Lansat products. https://earthexplorer.usgs.gov/. Accessed 15 Jan 2018
  • 52. USGS Land processes Data Active Archive Center. https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2. Accessed 15 Jan 2018
  • 53. Open Government Data (OGD) Platform India. https://data.gov.in/resources/district-wise-season-wise-crop-production-statistics-1997. Accessed 15 Jan 2018
  • 54. Pai DS, Sridhar L, Rajeevan M et al (2014) Development of a new high spatial resolution (0. 25 × 0. 25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65:1–18
  • 55. Rawls WJ, Gimenez D, Grossman R (1998) Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Trans ASABE 41(4):983–988
  • 56. Reynolds CA, Jackson TJ, Rawls WJ (2000) Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res 36:3653–3662. https://doi.org/10.1029/2000WR900130
  • 57. Shah RD, Mishra V (2015) Development of an experimental near-real-time drought monitor for India. J Hydrometeorol 16:327–345. https://doi.org/10.1175/JHM-D-14-0041.1
  • 58. Sharma T, Kiran PVS, Singh TP et al (2001) Hydrologic response of a watershed to land use changes: a remote sensing and GIS approach. Int J Remote Sens 22:2095–2108. https://doi.org/10.1080/01431160117359
  • 59. Singh CK, Shashtri S, Mukherjee S et al (2011) Application of GWQI to assess effect of land use change on groundwater quality in Lower Shiwaliks of Punjab: remote sensing and gis based approach. Water Resour Manag 25:1881–1898. https://doi.org/10.1007/s11269-011-9779-0
  • 60. Srivastava A, Rajeevan M, Kshirsagar S (2009) Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos Sci Lett 10:249–254. https://doi.org/10.1002/asl
  • 61. VanShaar JR, Haddeland I, Lettenmaier DP (2002) Effects of land-cover changes on the hydrological response of interior Columbia River basin forested catchments. Hydrol Process 16:2499–2520. https://doi.org/10.1002/hyp.1017
  • 62. Variable Infiltration Capacity (VIC) Model. Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195. http://www.hydro.washington.edu/Lettenmaier/Models/VIC/. Accessed 15 Jan 2018
  • 63. Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. https://doi.org/10.1038/nature09440
  • 64. Wagner PD, Kumar S, Schneider K (2013) An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrol Earth Syst Sci 17:2233–2246. https://doi.org/10.5194/hess-17-2233-2013
  • 65. Wang S, Kang S, Zhang L, Li F (2008) Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Hydrol Process 22:2502–2510. https://doi.org/10.1002/hyp.6846
  • 66. Wang G, Yu J, Shrestha S et al (2010) Application of a distributed erosion model for the assessment of spatial erosion patterns in the Lushi catchment, China. Environ Earth Sci 61:787–797. https://doi.org/10.1007/s12665-009-0391-z
  • 67. Wang GQ, Zhang JY, Jin JL et al (2012) Assessing water resources in China using PRECIS projections and a VIC model. Hydrol Earth Syst Sci 16:231–240. https://doi.org/10.5194/hess-16-231-2012
  • 68. Wilk J, Hughes DA (2002) Simulating the impacts of land-use and climate change on water resource availability for a large south Indian catchment. Hydrol Sci J 47:19–30. https://doi.org/10.1080/02626660209492904
  • 69. Wood EF, Lettenmaier D, Liang X et al (1997) Hydrological modeling of continental-scale basins. Annu Rev Earth Planet Sci 25:279–300. https://doi.org/10.1146/annurev.earth.25.1.279
  • 70. Wu Z, Lu G, Wen L et al (2007) Thirty-five year (1971–2005) simulation of daily soil moisture using the variable infiltration capacity model over China. Atmos Ocean 45:37–45. https://doi.org/10.3137/ao.v450103
  • 71. Yang H, Wang G, Yang Y et al (2014) Assessment of the impacts of land use changes on nonpoint source pollution inputs upstream of the Three Gorges Reservoir. Sci World J 2014:1–15. https://doi.org/10.1155/2014/526240
  • 72. Yin J, He F, Jiu Xiong Y, Yu Qiu G (2017) Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol Earth Syst Sci 21:183–196. https://doi.org/10.5194/hess-21-183-2017
  • 73. Zhang X, Zhang L, Zhao J et al (2008) Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour Res 44:1–12. https://doi.org/10.1029/2007WR006711
  • 74. Zhao R, Zuang Y, Fang L et al (1980) The Xinanjiang model. Hydrological forecasting oxford symposium IAHS, vol 129, pp 351–356
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8d87b35-a1ce-4aef-b046-a809231efa79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.