Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
he study investigates the properties and waste management potential of cellulose acetate waste, commonly used in cigarette filter production. The goal of the research is to address gaps in the state of the art by assessing compostability and phytotoxicity of acetate waste from cigarettes production, which significantly complement the current research focused on cigarette filters in the form of post-consumer buts. Under investigation was acetate in the form of homogenic, dye-free and non-contaminated tow from the beginning phase of the cigarette’s filters production process. The experimental framework adheres to the PN-EN 14045:2005 standard for controlled composting environments. Acute phytotoxicity assessment follows the PHYTOTESTKIT method based on PN-EN 11269-1:2013-06. Results indicate that under controlled conditions, acetate waste achieves a decomposition rate of 75.3% after 84 days. Phytotoxicity testing reveals varying germination rates for different plant species. Across substrates, only 81 out of 210 seeds germinated (39%). Specifically, green cucumber seeds showed no germination, oat seeds had a 29% germination rate (20% for compost with acetate), and cress seeds had a high 90% germination rate for each substrate. Overall, understanding these properties informs sustainable waste management practices, including potential applications in industries like geotextiles, crop mulching mats etc. The results led to the conclusion that additional testing should be perform according to the requirements specific for each industrial usage and to increase the compostability level under laboratory and natural conditions.
Czasopismo
Rocznik
Tom
Strony
119--126
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
- AGH University of Krakow, ul. Adama Mickiewicza 30, 30-059 Krakow, Poland
- AGH University of Krakow, ul. Adama Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Krakow, ul. Adama Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- 1. Ahzan W.A., Hussain A., Lin C., Nguyen M.K. 2023. Biodegradation of Different Types of Bioplastics through Composting - A Recent Trend in Green Recycling. Catalysts, 13, 294. DOI: 10.3390/catal13020294.
- 2. Allied Market Research Raport. 2022. Bioplastics Market Size, Share, Competitive Landscape and Trend Analysis Report, by Type and Application: Global Opportunity Analysis and Industry Forecast, 2022–2031. Bioplastics Market Size, Share| Industry Forecast, 2022–2031 (alliedmarketresearch.com), accessed on 25 April 2024.
- 3. Amaral H.R., Amaral H.R., Cipriano D.F., Santos M.S., Schettino Jr M.A., Ferreti J.V.T, Meirelles C.S, Pereira V.S , Cunha A.G, Emmerich F.G, Freitas J.C.C 2019. Production of high-purity cellulose, cellulose acetate and cellulose-silica composite from babassu coconut shells. Carbohydrate Polymers, 210, 127–134. DOI: 10.1016/j.carbpol.2019.01.061.
- 4. Bandini, F., Frache, A., Ferrarini, A., Taskin E., Cocconcelli P.S., Puglisi E. 2020. Fate of biodegradable polymers under industrial conditions for anaerobic digestion and aerobic composting of food waste. Journal of Polymers and the Environment, 28, 2539–2550. DOI:10.1007/s10924-020-01791-y.
- 5. Das A.M., Ali A.A., Hazarika M.P. 2014. Synthesis and characterization of cellulose acetate from rice husk: Eco-friendly condition. Carbohydrate Polymers, 211, 342–249. DOI: 10.1016/j.carbpol.2014.06.006.
- 6. Fan G., Wang M., Liao Ch., Fang T., Li J, Zhou R. 2013. Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid. Carbohydrate Polymers, 94, 71–76. DOI: 10.1016/j.carbpol.2013.01.073.
- 7. Fischer S., Thümmler K., Volkert B., Hettrich K., Schmidt I., Fischer K. 2008. Properties and applications of cellulose acetate. Macromolecular Symposia, 262(1), 89–96. DOI:10.1002/masy.200850210.
- 8. Geyer R., Jambeck J.R., Law K.L. 2017. Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. DOI:10.1126/sciadv.1700782 .
- 9. Hillis, D.M., Heller, H.C., Hacker, S.D., Hall, D.W., Laskowski, M.J., Sadava, D.E. Life: The Science of Biology; Macmillan Higher Education: New York, NY, USA, 2020
- 10. Kumar Gupta P., Sai Raghunath S., Venkatesh Prasanna D., Venkat P., Shree V., Chithananthan Ch., Choudhary S., Surender K., Geetha K. 2019. An Update on Overview of Cellulose, Its Structure and Applications. Cellulose. IntechOpen. http://dx.doi.org/10.5772/intechopen.84727.
- 11. Narancic T., O’Connor K. E., 2018. Plastic waste as a global challenge: are biodegradable plastic the answer to the plastic waste problem? Microbiology, 165, 129–137. DOI:10.1099/mic.0.000749.
- 12. Nizamuddin S., Chen C. 2024. Biobased, biodegradable and compostable plastics: chemical nature, biodegradation pathways and environemntal strategy. Environemntal Science and Pollution Research, 31, 8387–8399. DOI: 10.1007/s11356-023-31689-w.
- 13. Nova-Institue. 2021. European Bioplastics. Report_Bioplastics_Market_Data_2021_short_version.pdf (european-bioplastics.org), accessed on 15 February 2024.
- 14. Novotny TE, Hamzai L. 2023. Cellulose acetate cigarette filter is hazardous to human health Tobacco Control. DOI: 10.1136/tc-2023-057925.
- 15. OECD. 2022. Global Plastics Outlook, https://stats.oecd.org/viewhtml.aspx?datasetcode=PLASTIC_USE_10&lang=en, accessed on 21 September 2023.
- 16. Parida S., Prabhu S., Dinesh T.K., Tyagi K.K. 2022. A comprehensive study of biodegradatopn of cigarette filters and bidi butts. Contribution to Tobacco & Nicotine Research, 31(3), 151–161. DOI:10.2478/cttr-2022-0016.
- 17. PN-EN 11269-1:2013-06 - Soil quality - Determination of the effects of pollutants on soil flora - Part 2: Effects of contaminated soil on emergence and early growth of higher plants.
- 18. PN-EN 14045:2005 - Packaging - Evaluation of the disintegration of packaging materials in practical oriented tests under defined composting conditions.
- 19. Ragauskas A.J. 2006. The path forward for biofuels and biomaterials. Science, 311, 484–489. DOI: 10.1126/science.1114736.
- 20. Robertson R.M., Thomas W.C., Suthar J.N., Brown D.M. 2012. Accelerated degradation of cellulose acetate cigarette filters using controlled-release acid catalysis. Green Chemistry, 14(8), 2266–2272. DOI: 10.1039/C2GC16635F.
- 21. Sanchez O.J., Cardona C.A. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99, 5270–5295. DOI:10.1016/j.biortech.2007.11.013.
- 22. Statista Research Department. 2024. Gobal bioplastic industry – statistics & facts. Global bioplastics industry - statistics & facts | Statista, accessed on July 5, 2024.
- 23. Wang Ch., Liu Y., Chen W., Liu Y., Chen W-Q., Zhu B., Qu S., Ming Xu. 2021. Critical review of global plastic stock and flow data. Journal of Industrial Ecology 25, 1300–1317. DOI: 10.1111/jiec.13125.
- 24. Vaverkova M.D., Adamcova D. 2015. Biodegrability of bioplastic materials in a controled composting environment. Journal of Ecological Engineering, 16, 155–160. DOI: 10.12911/22998993/2949
- 25. Vikman, M., Vartiainen, J., Tsitko, I., Korhonen, P. 2015. Biodegradability and compostability of nanofibrillar cellulose-based products. J. Polym. Environ. 23, 206–215. DOI: 10.1007/s10924-014-0694-3.
- 26. Yin J., Xie M., Yu X., Feng H., Wang M., Zhang Y., Chen T. 2024. A review of the definition, influencing dactors, and mechanism of rapid coposting of organic waste. Environmental Pollution 342, 123125. DOI: 10.1016/i.envpol.2023.123125
- 27. Zhang Y.H.P. 2008. Reviving the carbohydrate economy via multiproduct lignocellulose biorefineries. Journal of Industrial Microbiology & Biotechnology, 35, 367–375. DOI:10.1007/s10295-007-0293-6
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8d30567-9977-488c-8ffe-106667650862
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.