PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of a multiphase free boundary problem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigate a free boundary problem relevant in several applications, such as tumor growth models. Our problem is expressed as an elliptic equation involving discontinuous nonlinearities in a specified domain with a moving boundary. We establish the existence and uniqueness of solutions and provide a qualitative analysis of the free boundaries generated by the nonlinear term (inner boundaries). Furthermore, we analyze the dynamics of the outer region boundary. The final result demonstrates that under certain conditions, our problem is solvable in the neighborhood of a radial solution.
Rocznik
Strony
631--649
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
  • University of Tlemcen, Faculty of Sciences, Department of Mathematics, Dynamical Systems and Applications Laboratory, B.P. 119, Tlemcen 13000, Algeria
autor
  • University of Tlemcen, Faculty of Sciences, Department of Mathematics, Dynamical Systems and Applications Laboratory, B.P. 119, Tlemcen 13000, Algeria
Bibliografia
  • [1] A. Abdelouahab, S. Bensid, Perturbation analysis in a free boundary problem arising in tumor growth model, arXiv:2303.15828.
  • [2] R. Araujo, D.L.S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol. 66 (2004), 1039–1091.
  • [3] S. Bensid, A free boundary problem for a discontinuous semilinear elliptic equations in convex ring, Complex Var. Elliptic Equ. (2024), 1–10.
  • [4] S. Bensid, J.I. Díaz, Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions, Discrete Contin. Dyn. Syst. Ser. S 22 (2017), 1757–1778.
  • [5] S. Bensid, J.I. Díaz, On the exact number of monotone solutions of a simplified Budyko climate model and their different stability, Discrete Contin. Dyn. Syst. Ser. S 24 (2019), 1033–1047.
  • [6] A. Borisorich, A. Friedman, Symmetry-breaking bifurcations for free boundary problem, Indiana Univ Math. J. 54 (2005), 927–947.
  • [7] H.M. Byrne, Mathematical Biomedicine and Modeling Avascular Tumor Growth, Mathematics and Life Sciences, De Gruyter, 1 (2012), 277–303.
  • [8] H.M. Byrne, M.A.J. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci. 131 (1995), 151–181.
  • [9] H.M. Byrne, M.A.J. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci. 135 (1996), 187–216.
  • [10] M.G. Crandall, P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321–340.
  • [11] S. Cui, Analysis of a free boundary problem modeling tumor growth, Acta. Math. Sin. (Engl. Ser.) 21 (2005), 1071–1082.
  • [12] S. Cui, A. Friedman, Analysis of a mathematical model of the growth of necrotic tumors, J. Math. Anal. Appl. 255 (2001), 636–677.
  • [13] E. DiBenedetto, Partial Differential Equations, Springer Science, Business Media New York, 1995.
  • [14] M. Fontelos, A. Friedman, Symmetry-Breaking bifurcations for free boundary problems in three dimensions, Asymptot. Anal. 35 (2003), 187–206.
  • [15] A. Friedman, B. Hu, Asymptotic stability for a free boundary problem arising in tumor models, J. Differ. Equ. 227 (2006), 598–639.
  • [16] A. Friedman, B. Hu, Bifurcation for stability to instability for a free boundary problem arising in a tumor model, Arch. Rational Mech. Anal. 180 (2006), 293–330.
  • [17] A. Friedman, K. Lam, Analysis of a free boundary tumor model with angiogenesis, J. Differ. Equ. 259 (2015), 7636–7661.
  • [18] A. Friedman, F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol. 38 (1999), 262–284.
  • [19] D. Gilbarg, N. Trudinger, Elliptic Partial Diferential Equations of Second Order, Springer-Verlag, New York, 1983.
  • [20] H.P. Greenspan, Models for the growth of a solid tumor by diffusion, Stud. Appl. Math. 51 (1972), 317–340.
  • [21] H.P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol. 56 (1976), 229–242.
  • [22] Y. Huang, Z. Zhang, B. Hu, Bifurcation from stability to instability for a free boundary tumor model with angiogenisis, Discret Contin. Dyn. Sys. 39 (2019), 2473–2510.
  • [23] D.L.S. McElwain, L.E. Morris, Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth, Math. Biosci. 39 (1978), 147–157.
  • [24] C. Müller, Spherical Harmonics, Lecture Notes in Math., vol. 17, Springer, Berlin, Heidelberg, New York, 1966.
  • [25] S. Xu, Stability of solutions to a free boundary problem for tumor growth, Int. J. Differ. Equ. 4 (2014), Article ID 427547.
  • [26] J. Wu, Stationary solutions of a free boundary problem modeling the growth of vascular tumors with Gibbs–Thomson relation, J. Differ. Equ. 260 (2016), 5875–5893.
  • [27] J. Wu, F. Zhou, Asymptotic behavoir of solutions os a free boundary problem modeling the growth of tumors with fluid-like tissue wider the action of inhibitors, Trans. Amer. Math. Soc. 365 (2013), 4181–4207.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8cfdcbd-c27c-40c4-98c0-eb75163e72ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.