Identyfikatory
Warianty tytułu
Qualitative research on the influence of the cathode surface state on measurement results of mass transfer coefficients using electrolytic technique
Języki publikacji
Abstrakty
The paper presents the results of qualitative investigations on the effect of the cathode surface state on mass transfer coefficients during the electrochemical process. Electrochemical methods have wide applications [1]. One of these method is the limiting current technique which is used in model studies on mass and heat transfer. Exemplary applications of the limiting current technique in heat transfer research with the use of mass/heat transfer analogy can be found in [2–7]. In the present paper the authors focused on measuring the mass transfer coefficients at the flat nickel cathode under free convection conditions. A schematic diagram of the measuring system is shown in Fig.1. The obtained voltammograms with clear visible flat segments representing limiting current values are presented in Fig. 2–4. In turn, Table 2 and 3 include the results of mass transfer coefficients calculation on the basis of limiting current values obtained for different condition of cathode surface. The surface of cathode was prepared before the experiment. It was polished using 400- , 600- and 800-grade SiC paper. Next, the cathode was polished by the special abrasive compound. Necessary for mass transfer coefficient calculations the ion concentration was measured using iodometric titration method. The experimental results confirmed the importance of keeping the measurement conditions. The cathode surface smoothing increases the mass transfer coefficients. The results are consistent with those received by the other researchers [9].
Wydawca
Czasopismo
Rocznik
Tom
Strony
403--413
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wykr.
Twórcy
autor
- Politechnika Rzeszowska im. Ignacego Łukasiewicza, Wydział Budowy Maszyn i Lotnictwa, Zakład Termodynamiki, Al. Powstańców Warszawy 8, 35-959 Rzeszów
autor
- Politechnika Rzeszowska im. Ignacego Łukasiewicza, Wydział Budowy Maszyn i Lotnictwa, Zakład Termodynamiki, Al. Powstańców Warszawy 8, 35-959 Rzeszów
Bibliografia
- [1] I. Ufnalska, M.Z. Wiloch, M. Wesoły, P. Ćwik, M. Zabadaj, P. Ciosek, U.E. Wawrzyniak, W. Wróblewski, Wiad. Chem. 2015, 69, 931.
- [2] B. Bieniasz, Heat and Mass Transfer, 2014, 50, 1211.
- [3] J. Wilk, Inżynieria i Aparatura Chemiczna, 2012, 1, 18
- [4] J. Wilk, Experimental Thermal and Fluid Science, 2009, 33, 267.
- [5] J. Wilk, Experimental Thermal and Fluid Science, 2012, 38, 107.
- [6] O.N. Sara, Ő. Barlay Ergu, M.E. Arzutug, S.Yapıcı, Int. Journal of Thermal Science, 2009, 48, 1894.
- [7] S. Grosicki, Applied Mechanics and Materials, 2016, 831, 216.
- [8] A. Kisza, Elektrochemia II, WNT, Warszawa 2001
- [9] D.A. Szánto, S. Cleghorn, C. Ponce-de-León, F.C. Walsh, AIChE Journal, 2008, 54, 802.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8ce3008-210d-4599-9fee-2fcec788a67c