PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using 1D and 2D computer models when predicting hydrodynamic and morphological parameters of a boulder block ramp: Poniczanka stream, Carpathians

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When modelling flow and/or sediment transport in streams and rivers, one must frequently use the computer software of differing levels of complexity. The level of sophistication, accuracy, and quality of results are the parameters by which models can be classified as being 1D, 2D, or 3D; it seems certain that in the future, there will also be 4D and 5D models. However, the results obtained from very sophisticated models are frequently questionable, and designers in the field of hydraulic structures must have considerable experience distinguishing important information from irrelevant information. Thus, this paper aims to investigate the effect of the selected boulder block ramp hydraulic structure at Poniczanka stream on the bed-load transport. We evaluated sediment transport using the CCHE2D numerical model. We analysed several scenarios depending on the river bed type (erodible, non-erodible, rocky) and examined the rock blocks used for hydraulic structure construction. The obtained results were compared with the Hjulström and the Shields graph, which are a classic approach for identifying fluvial processes in river channels. In addition to these two methods, numerical modelling using the 1D HEC-RAS (Hydrologic Engineering Center’s River Analysis System) modelling were conducted, which included the determination of horizontal and vertical changes to the river bed morphology of the examined section of river reach as well as providing the basic hydrodynamics parameters which, from the practical point of view, designers involved in the process of designing ramps could use.
Wydawca
Rocznik
Strony
34--48
Opis fizyczny
Bibliogr. 56 poz., fot., mapa, rys., tab., wykr.
Twórcy
  • University of Agriculture in Krakow, Faculty Environmental Engineering and Land Surveying, Department of Hydraulic Engineering and Geotechnics, al. Mickiewicza 24/28, 30-059 Kraków, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics and Materials, Kraków, Poland
  • Juarez Autonomous University of Tabasco, Academic Division of Engineering and Architecture, Cunduacan, Tabasco, Mexico
Bibliografia
  • BARTNIK W. 1992. Hydraulika potoków i rzek górskich z dnem ruchomym. Początek ruchu rumowiska wleczonego [Fluvial hydraulics of streams and mountain rivers with mobile bed. Beginning of bed load motion]. Zeszyty Naukowe Akademii Rolniczej w Krakowie. Rozprawy. Rozprawa habilitacyjna. Nr 171. ISSN 0239-8117 pp. 101.
  • BRUNNER G. 2010. HEC-RAS. River analysis system hydraulic reference manual. Davis. US Army Corps of Engineers Hydrologic Engineering Center pp. 525.
  • BRUNNER G. 2016. HEC-RAS, River analysis system hydraulic reference manual. Davis. US Army Corps of Engineers Hydrologic Engineering Center pp. 538.
  • BUFFINGTON J.M. 1995. Effects of hydraulic roughness and sediment supply on surface textures of gravel-bedded rivers. Report no. TFW-SHlO-95-002. University of Washinghton pp. 197.
  • BYLAK A., KUKUŁA K., PLESIŃSKI K., RADECKI-PAWLIK A. 2017. Effect of a baffled chute on stream habitat conditions and biological communities. Ecological Engineering. Vol. 106 p. 263–272. DOI 10.1016/j.ecoleng.2017.05.049.
  • CHOW V.T. 1959. Open-channel hydraulics. New York. McGraw-Hill Book pp. 680.
  • CURTEAN-BĂNĂDUC A., BĂNĂDUC D., BUCŞA C. 2007. Watersheds management (Transylvania/Romania): Implications, risks, solutions. In: Strategies to enhance environmental security in transition countries. NATO Science for Peace and Security Series C: Environmental Security. Eds. R.N. Hull, C.-H. Barbu, N. Goncharova. Dordrecht. Springer p. 225–238. DOI 10.1007/978-1-4020-5996-4_17.
  • CZECH W., RADECKI-PAWLIK A., WYŻGA B., HAJDUKIEWICZ H. 2016. Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions. Geomorphology. Vol. 272 p. 32–42. DOI 10.1016/j.geomorph.2015.09.025.
  • DĄBKOWSKI S.L. 1992. Kryterium Shieldsa po pięćdziesięciu latach [Shields criterion after fifty years]. Gospodarka Wodna. Nr 1 p. 19–21.
  • Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ L 327 pp. 73.
  • ENGELUND J., HANSEN B. 1967. A monograph on sediment transport in alluvial streams. Hydraulic Engineering Reports. Copenhagen. Teknisk forlag pp. 65.
  • FOLK R.L., WARD W.C. 1957. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Research. Vol. 27(1) p. 3–26. DOI 10.1306/74D70646-2B21-11D7-8648000102C1865D.
  • GĄSIOROWSKI D., NAPIÓRKOWSK J., SZYMKIEWICZ R. 2015. One-dimensional modeling of flows in open channels. In: Rivers – physical, fluvial and environmental processes. Eds. P. Rowiński, A. Radecki-Pawlik. Springer, Berlin p. 137–167.
  • GRAF W.H. 1984. Hydraulics of sediment transport. Highlands Ranch, Colorado. Water Resources Publications. ISBN 091833456X pp. 513.
  • HAJDUKIEWICZ H., WYŻGA B., AMIROWICZ A., OGLĘCKI P., RADECKI-PAWLIK A., ZAWIEJSKA J., MIKUŚ P. 2018. Ecological state of a mountain river before and after a large flood: Implications for river status assessment. Science of the Total Environment. Vol. 610–611 p. 244–257. DOI 10.1016/j.scitotenv.2017.07.162.
  • HÄMMERLING M., ZAWADZKI P., WALCZAK N., WIERZBICKI M. 2014. Transport rumowiska w rzekach. Część I: Początek ruchu, graniczne naprężenia styczne [The bed load transport in rivers. Part I: Start moving, shear stress]. Acta Scientiarum Polonorum. Formatio Circumiectus. Vol. 13(4) p. 109–120.
  • HELLEY E.J. 1969. Field measurement of the initiation of large bed particle motion in Blue Creek near Klamath, California. Geological Survey Professional Paper. No. 562-G. Washington. United States Government Printing Office. DOI 10.3133/pp562G.
  • HJULSTRÖM F. 1935. Studies of the morphological activity of rivers as illustrated by the River Fyris. PhD Thesis. Bulletin of the geological institutions of the University of Uppsala. Vol. 25 p. 221–537.
  • JIA Y., WANG S.S. 2009. Development of A Water Infrastructural System Chemical Spill Simulation Model (WIS-CSSM). Computational Tools for water security. Task Order. No. 4000055423. Technical Report. No. NCCHE-SERRI-TR-2009-01 pp. 267.
  • KAŁUŻA T., RADECKI-PAWLIK A., SZOSZKIEWICZ K., PLESIŃSKI K., RADECKI-PAWLIK B., LAKS I. 2018. Plant basket hydraulic structures (PBHS) as a new river restoration measure. Science of the Total Environment. Vol. 627 p. 245–255. DOI 10.1016/j.scitotenv.2018.01.029.
  • KAMANBEDAST A.A., NASROLLAHPOUR R., MASHAL M. 2013. Estimation of sediment transport in rivers using CCHE2D model (Case study: Karkheh River). Indian Journal of Science and Technology. Vol. 6(2) p. 138–141. DOI 10.17485/ijst/2013/v6i2.9.
  • KNAUSS J. 1980. Drsne skluzy [Rough ramps]. Vodni Hospodarstvi. Rada A C 1 p. 23–26.
  • KUKUŁA K. 2003. Structural changes in the ichthyofauna of the Carpathian tributaries of the River Vistula caused by anthropogenic factors. Supplementa ad Acta Hydrobiologica. Vol. 4. ISSN 1643-3157 pp. 63.
  • KUKUŁA K. 2006. A low stone weir as a barrier for the fish in a mountain stream. Polish Journal of Environmental Studies. Vol. 15(5d) p. 132–137.
  • KUNDZEWICZ Z., STOFFEL M., WYŻGA B., RUIZ-VILLANUEVA V., NIEDŹWIEDŹ T., KACZKA R., ..., JANECKA K. 2017. Changes of flood risk on the northern foothills of the Tatra Mountains. Acta Geophysica. Vol. 65(4) p. 799–807. DOI 10.1007/s11600-017-0075-0.
  • MEYER-PETER E., MÜLLER R. 1948. Formulas for bed load transport [online]. Proceedings of 2 nd meeting of the International Association for Hydraulic Structures Research. Stockholm 7–9.06.1948 p. 39–64. [Access 30.04.2022]. Available at: https://repository.tudelft.nl/islandora/object/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7?collection=research
  • MICHALIK A. 1990. Badania intensywności transportu rumowiska wleczonego w rzekach karpackich. Analiza modeli empirycznych stosowanych w obliczeniach transportu rumowiska przy wykorzystaniu pomiarów radioznacznikowych [Bedload discharge investigations in Carpathian rivers. Analysis of empirical models applied in computation of bedload discharge with using radioisotope measurements]. Zeszyty Naukowe Akademii Rolniczej w Krakowie. Rozprawy. Rozprawa habilitacyjna. Nr 138. ISSN 0239-8117 pp. 115.
  • MIKUŚ P., WYŻGA B., KACZKA R., WALUSIAK E., ZAWIEJSKA J. 2013. Islands in a European mountain river: Linkages with large wood deposition, flood flows and plant diversity. Geomorphology. Vol. 202 p. 115–127. DOI 10.1016/j.geomorph.2012.09.016.
  • OERTEL M. 2013. In-situ measurements on cross-bar block ramps. In: IWLHS 2013 International Workshop on Hydraulic Design of Low-Head Structures, Karlsruhe. Bundesanstalt für Wasserbau p. 111–119.
  • PAGLIARA S., PALERMO M. 2013. Rock grade control structures and stepped gabion weirs: Scour analysis and flow features. Acta Geophysica. Vol. 61(1) p. 126–150. DOI 10.2478/s11600-012-0066-0.
  • PAGLIARA S., RADECKI-PAWLIK A., PALERMO M., PLESIŃSKI K. 2017. Block ramps in curved rivers: Morphology analysis and prototype data supported design criteria for mild bed slopes. River Research and Applications. Vol. 33(3) p. 427–437. DOI 10.1002/rra.3083.
  • PLESIŃSKI K., BYLAK A., RADECKI-PAWLIK A., MIKOŁAJCZYK T., KUKUŁA K. 2018a. Possibilities of fish passage through the block ramp: Model-based estimation of permeability. Science of the Total Environment. Vol. 631–632 p. 1201–1211. DOI 10.1016/j.scitotenv.2018.03.128.
  • PLESIŃSKI K., PACHLA F., RADECKI-PAWLIK A., TATARA T., RADECKI-PAWLIK B. 2018b. Numerical 2D simulation of morphological phenomena of a block ramp in Poniczanka stream: Polish Carpathians. In: 7 th IAHR International Symposium on Hydraulic Structures. Eds. D. Bung, B. Tullis. Aachen, Germany 15–18.05.2018 p. 317–327.
  • PLESIŃSKI K., RADECKI-PAWLIK A., KUBOŃ P., TATARA T., PACHLA F., JURKOWSKA N. 2022. Bed load transport and alternation of a gravel-bed river morphology within a vicinity of block ramp: Classical and numerical approach. Sustainability. Vol. 14(8), 4665. DOI 10.3390/su14084665.
  • PLESIŃSKI K., RADECKI-PAWLIK A., WYŻGA B. 2015. Sediment transport processes related to the operation of a rapid hydraulic structure (block ramp) in a mountain stream channel: A Polish Carpathian example. In: Sediment matters. Eds. P. Heininger, J. Cullmann. Cham. Springer p. 39–58.
  • RADECKI-PAWLIK A. 2013. On using artificial Rapid Hydraulic Structures (RHS) within mountain stream channels: Some exploitation and hydraulic problems. In: Experimental and computational solutions of hydraulic problems. Ed. P. Rowiński. Berlin–Heidelberg. Springer p. 101–115.
  • RADECKI-PAWLIK A. 2014. Hydromorfologia rzek i potoków górskich [Hydromorphology of rivers and mountain streams]. Wydaw. UR w Krakowie. ISBN 9788360633984 pp. 304.
  • RADECKI-PAWLIK A., PLESIŃSKI K., RADECKI-PAWLIK B., KUBOŃ P., MANSON R. 2018. Hydrodynamic parameters in a flood impacted boulder block ramp: Krzczonówka mountain stream, Polish Carpathians. Journal of Mountain Science. Vol. 15(11) p. 2335–2346. DOI 10.1007/s11629-018-4893-6.
  • RADECKI-PAWLIK A., SKALSKI T., PLESIŃSKI K., CZECH W. 2015. On bankfull methods determination again – Why we care? Journal of Water and Land Development. No. 27(X–XII) p. 21–27. DOI 10.1515/jwld-2015-0021.
  • SHIELDS A. 1936. Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung [Application of similarity mechanics and turbulence research to bed load movement]. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau. Vol. 26 pp. 26.
  • SZYMKIEWICZ R. 2000. Modelowanie matematyczne przepływów w rzekach i kanałach [Mathematical modelling of flows in rivers and canals]. Warszawa. Wydaw. Nauk. PWN. ISBN 9788301131715 pp. 321.
  • SZYMKIEWICZ R. 2012. Metody numeryczne w inżynierii wodnej [Numerical methods in water engineering]. Gdańsk. Wydaw. PGdań. ISBN 9788373484573 pp. 272.
  • SZYMKIEWICZ R. 2015. Open channel flow equations. In: Numerical modeling in open channel hydraulics. Ed. R. Szymkiewicz. Berlin. Springer p. 1–51.
  • TAMAGNI S., WEITBRECHT V., BOES R. 2014. Experimental study on the flow characteristics of unstructured block ramps. Journal of Hydraulic Research. Vol. 52(5) p. 600–613. DOI 10.1080/00221686.2014.950610.
  • USACE 2016a. HEC-RAS Hydraulic reference manual. Version 5.0. River Analysis System [online]. Davis, CA. US Army Corps of Engineers. [Access 30.04.2022]. Available at: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Reference%20Manual.pdf
  • USACE 2016b. HEC-RAS User’s manual. Version 5.0. River Analysis System [online]. Davis, CA. US Army Corps of Engineers. [Access 30.04.2022]. Available at: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Users%20Manual.pdf
  • WEITBRECHT V., TAMAGNI S., BOES R. 2016. Stability of unstructured block ramps. Journal of Hydraulic Engineering. Vol. 143(4), 04016095. DOI 10.1061/(ASCE)HY.1943-7900.0001259.
  • WILCOCK P.R., KENWORTHY S.T., CROWE J.C. 2001. Experimental study of the transport of mixed sand and gravel. Water Resources Research. Vol. 37(12) p. 3349–3358. DOI 10.1029/2001WR000683.
  • WOLMAN M.G. 1954. A method of sampling coarse riverbed material. Eos, Transactions American Geophysical Union. Vol. 35(6) p. 951–956. DOI 10.1029/TR035i006p00951.
  • WU W. 2004. Depth-averaged two-dimensional numerical modeling of unsteady flow and non-uniform sediment transport in open channels. Journal of Hydraulic Engineering. Vol. 130(10) p. 1013–1024. DOI 10.1061/(ASCE)0733-9429(2004)130:10(1013).
  • WU W., WANG S.S. 2005. Development and application of NCCHE’s sediment transport models. Proceedings of US–China workshop on advanced computational modelling in hydroscience & engineering. [Oxford, Mississippi, USA 19–21.09.2005] p. 1–15.
  • WYŻGA B., KUNDZEWICZ Z., KONIECZNY R., PINIEWSKI M., ZAWIEJSKA J., RADECKI-PAWLIK A. 2018. Comprehensive approach to the reduction of river flood risk: Case study of the Upper Vistula Basin. Science of the Total Environment. Vol. 631–632 p. 1251–1267. DOI 10.1016/j.scitotenv.2018.03.015.
  • WYŻGA B., ZAWIEJSKA J., RADECKI-PAWLIK A. 2016. Impact of channel incision on the hydraulics of flood flows: Examples from Polish Carpathian rivers. Geomorphology. Vol. 272 p. 10–20. DOI 10.1016/j.geomorph.2015.05.017.
  • YEN B.C. 1991. Channel flow resistance: Centennial of Manning’s formula. Littleton, Colorado. Water Resources Pub. ISBN 9780918334725 pp. 453.
  • ZALEWSKI M., KIEDRZYŃSKA E., WAGNER I., IZYDORCZYK K., MANKIEWICZ BOCZEK J., JURCZAK T., ..., JAROSIEWICZ P. 2021. Ecohydrology and adaptation to global change. Ecohydrology & Hydrobiology. Vol. 21(3) p. 393–410. DOI 10.1016/j.ecohyd.2021.08.001.
  • ZAWIEJSKA J., WYŻGA B., RADECKI-PAWLIK A. 2015. Variation in surface bed material along a mountain river modified by gravel extraction and channelization, the Czarny Dunajec, Polish Carpathians. Geomorphology. Vol. 231 p. 353–366. DOI 10.1016/j.geomorph.2014.12.026.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8cbad5a-0082-4ea5-a737-3527682ac2f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.