PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydroelectric Power Plants and River Morphodynamic Processes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydropower is one of the renewable energy sources. Hydropower plants generate electricity using the kinetic energy of flowing water. Although hydroelectric power plants are not as prominent as solar or wind farms, it should be noted that they generate the most significant amount of the power. They are also the most technically advanced projects. Power plants are built with different technical parameters of turbines, different sizes of dams or weirs and different ways of exploiting the energy of flowing water. A common feature, however, is the significant impact of hydroelectric power plants on the functioning of adjacent regions. The paper divides this impact into economic and local development, landscape, and ecological functions, emphasizing the interaction of these influences. The paper discusses the hydromorphological changes taking place in the immediate vicinity of the structure, as a consequence of channel development. The processes of aggradation and degradation of the channel are the answer to hydrodynamic equilibrium loss. These hydrodynamic processes are associated with the subsequent ecological response of the habitat. The most important of these include the dynamic equilibrium loss by the river and the subsequent morphological parameters striving to restore it according to Lane’s relation, known as the most important principle in the fluvial morphology science. The impact of the hydropower plant on the fluvial environment results, first of all, from a significant environmental impact of the damming of the river itself. If the structure is correctly designed, maintained, and operated, it allows controlling the water conditions upstream and downstream with simultaneous energy production. Due to several geometric, hydraulic, and granulometric changes, and further, the resultant economic, landscape, and natural changes that significantly affect the operation of a region, these should be considered as early as the design stage and should be an integral part of any hydroelectric project.
Słowa kluczowe
Rocznik
Strony
163--178
Opis fizyczny
Bibliogr. 75 poz., rys., tab.
Twórcy
autor
  • Department of Hydrotechnics, Technology and Management, Faculty of Civil and Environmental Engineering, Institute of Civil Engineering, Warsaw University of Life Sciences WULS – SGGW, Poland
Bibliografia
  • 1. Aggidis G. A., Luchinskaya E., Rothschild R., Howard D. C. 2010. The costs of small-scale hydro power production: Impact on the development of existing potential. Renewable Energy 35(12), 2632– 2638. DOI: 10.1016/j.renene.2010.04.008.
  • 2. Anderson D., Moggridge H., Warren P., Shucksmith J. 2014. The impacts of “run-of-river” hydropower on the physical and ecological condition of rivers. Water and Environment Journal 29(2), 268–276. DOI: 10.1111/wej.12101.
  • 3. Arle J. 2002. Physical and chemical dynamics of temporary ponds on a calcareous plateau in Thuringia, Germany. Limnologica 32, 83–101. DOI: 10.1016/S0075–9511(02)80001–9.
  • 4. Arthington A. H. 2012. Effects of Dams on Habitat and Aquatic Biodiversity. In: Environmental Flows: Saving Rivers in the Third Millennium, ed. Penrose, D., University of California Press, California, USA. DOI: 10.1525/california/9780520273696.001.0001.
  • 5. Askari M., Mirzaei M. A., Mirhabibi M., Dehghani P. 2015. Hydroelectric energy advantages and disadvantages. American Journal of Energy Science 2(2). 17–20.
  • 6. Bajkowski S., Górnikowska B. 2013. Hydropower production against energy from other renewable sources. Scientific Review – Engineering and Environmental Sciences 59, 77–87.
  • 7. Basson G. 2004. Hydropower dams and fluvial morphological impacts – An African perspective. Proceedings of United Nations Symposium on Hydropower and Sustainable Development, 27–29.
  • 8. Birkett J. W., Lester J. N. 2005. Distribution of mercury and methylmercury in the sediments of a lowland river system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461(2057), 1335–1355. DOI: 10.1098/rspa.2004.1408.
  • 9. Bogen, J., Bønsnes, T. 2001. The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway. Science of the Total Environment 266(1–3), 273–280. DOI: 10.1016/s0048–9697(01)00650–7.
  • 10. Brandt S. A. 2000. Classification of geomorphological effects downstream of dams. CATENA 40(4), 375–401. DOI: 10.1016/s0341–8162(00)00093-x.
  • 11. Çelikdemir S., Yıldırım B., & Özdemir M. 2017. Cost analysis of mini hydro power plant using bacterial swarm optimization. International Journal of Energy and Smart Grid 2, 64–81. DOI: 10.23884/IJESG.2017.2.2.05.
  • 12. Clark J. J., Wilcock P. R. 2000. Effects of land use change on channel morphology in northeastern Puerto Rico. Geological Society of America Bulletin 112(12), 1763–1777.
  • 13. Csiki S., Rhoads B. 2010. Hydraulic and geomorphological effects of run-of-river dams. Progress in Physical Geography 34 (6), 755–780. DOI: 10.1177/0309133310369435.
  • 14. Davey A., Kelly D. and Biggs B. 2006. Refuge-use strategies of stream fishes in response to extreme low flows. Journal of Fish Biology 69 (4), 1047–1059. DOI: 10.1111/j.1095–8649.2006.01180.x.
  • 15. De Faria F. A. M., Davis A., Severnini E., Jaramillo P. 2017. The local socio-economic impacts of large hydropower plant development in a developing country. Energy Economics 67, 533–544. DOI: 10.1016/j.eneco.2017.08.025.
  • 16. Dugan P. J., Barlow C., Agostinho A. A., Baran E., Cada G. F. Chen D., Cowx I. G., Ferguson J. W., Healey M., Dugan P., Barlow C. 2010. Potential effects of dams on migratory fish in the Mekong river: lessons from salmon in the fraser and Columbia rivers. Environmental Management 47(1), 141–159. DOI: 10.1007/s00267–010–9563–6
  • 17. Ferguson J. W., Jutagate T., Mallen-Cooper M., Marmulla G., Nestler J., Petrere M., Welcomme R. L., Winemiller K. O. 2010. Fish migration, dams, and loss of ecosystem services in the Mekong basin. AMBIO 39(4), 344–348. DOI: 10.1007/s13280–010–0036–1.
  • 18. Feyrer J., Mansur E. T., Sacerdote B. 2017. Geographic dispersion of economic shocks: evidence from the fracking revolution. American Economic Review 107 (4), 1313–34. DOI: 10.1257/aer.20151326.
  • 19. Fu B, Li N. 2019. Tradeoff between hydropower and river Visual landscape services in mountainous areas. Sustainability 11(19), 5509. DOI: 10.3390/su11195509
  • 20. Gauld N., Campbell R. Lucas M. 2013. Reduced flow impacts salmonid smolt migration in a river with low-head weirs. Science of the Total Environment 458, 435–443. DOI: 10.1016/j.scitotenv.2013.04.063.
  • 21. Gosink J., Osterkamp T. 1983. Measurements and analyses of velocity profiles and frazil ice-crystal rise velocities during periods of frazil-ice formation in rivers. Annals of Glaciology 4, 79–84. DOI:10.3189/S0260305500005279.
  • 22. Graf W.H., Fluvial hydraulics, John Wiley & Sons Ltd, Chichester, 1998.
  • 23. Howard L., Anderson I., Underwood K., Dewoolkar M., Deschaine L., Rizzo D. 2016. Heuristic assessment of bridge scour sensitivity using differential evolution: case study for linking floodplain encroachment and bridge scour. Environmental Systems Research 5(1), 20. DOI: 10.1186/s40068–016–0071–4.
  • 24. Hupp C.R., Schenk E.R., Richter J.M., Peet R.K., Townsend P.A. 2009. Bank erosion along the damregulated lower Roanoke River, North Carolina, in: Management and Restoration of Fluvial Systems with Broad Historical Changes and Human Impacts, eds. James L.A., Rathburn S.L., Whittecar G.R., Geological Society of America. DOI: 10.1130/2009.2451(06).
  • 25. IRENA (2018), Renewable Energy Statistics 2018, The International Renewable Energy Agency, Abu Dhabi.
  • 26. Jachniak E., Jaguś A., Młyniuk A., Nycz B. 2019. The quality problems of the dammed water in the mountain forest catchment. Journal of Ecological Engineering 20(5), 165–171. DOI: 10.12911/22998993/105367
  • 27. Jain A.K. 2000. Silting problems in hydro power projects: Indian Scenario. In: Silting problems in hydro power plants, eds. Varma C.V.J., Naidu B.S.K., Rao A.R.G., A.A. Balkema, Rotterdam, 37–55.
  • 28. Killingtveit Å. 2019. Hydropower. In: Managing Global Warming, ed. Letcher T., Elsevier, 265–315. DOI: 10.1016/b978–0-12–814104–5.00008–9.
  • 29. Jaskuła J., Wicher-Dysarz J., Dysarz T., Sojka M. 2015. Simulation of sediment transport in the Jezioro Kowalskie reservoir located in the Glowna river. Ecological Engineering & Environmental Technology 43, 131–138. DOI: 10.12912/23920629/58914.
  • 30. Katagi T. 2006. Behavior of pesticides in watersediment systems. Reviews of Environmental Contamination and Toxicology 187, 133–251. DOI: 10.1007/0–387–32885–8_4. PMID: 16802581.
  • 31. Killingtveit Å., Liu Z. 2012. Hydropower. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, eds. Edenhofer O., Pichs-Madruga R., Sokona Y., Seyboth K. Matschoss P., Kadner S., Zwickel T., Eickemeier P., Hansen G., Schlömer S., von Stechow C. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 32. Kiraga M., Popek Z. 2016. Using a modified Lane’s relation in local bed scouring studies in the laboratory channel. Water 8(1). DOI: 10.3390/w8010016.
  • 33. Kiraga M. 2020. Local scour modelling on the basis of flume experiments. Acta Scientiarum Polonorum Architectura 18(4), 15–26. DOI: 10.22630/ASPA.2019.18.4.41.
  • 34. Kiraga M., Miszkowska A. 2020 Lane’s relation in local scour investigations. IEEE Access 8, 146967–146975. doi: 10.1109/ACCESS.2020.3013275.
  • 35. Kline P., Moretti E. 2013. Local economic development, agglomeration economies, and the big push: 100 years of evidence from the Tennessee valley authority. The Quarterly Journal of Economics 129(1), 275–331. DOI: 10.1093/qje/qjt034
  • 36. Koskinen K., Leino T., Riipinen H. 2008. Sustainable development with water hydraulics–possibilities and challenges. Proceedings of the JFPS International Symposium on Fluid Power, 11–18. DOI: 10.5739/isfp.2008.11.
  • 37. Koszelnik P., Bartoszek L. 2018. Influence of sedimentary Fe and Mn on the oxygenation of overlying waters in dam reservoirs. Journal of Ecological Engineering 19(5), 180–185. DOI: 10.12911/22998993/89823.
  • 38. Książek L., Michalik A., Śladowski T. 2008. Grainsize composition of bedload as indicator of local degradation of river channels. Acta Scientarum Polonorum Formatio Circumiectus 7(4), 3–12.
  • 39. Kucukali S., Baris K. 2009. Assessment of small hydropower (SHP) development in Turkey: Laws, regulations and EU policy perspective. Energy Policy 37(10), 3872–3879. DOI: 10.1016/j.enpol.2009.06.023.
  • 40. Kumar A., Schei T., Ahenkorah A., Rodriguez R., Devernay J. M., Freitas M., Hall D., Killingtveit Å, Liu Z. 2011. Hydropower. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, eds. Edenhofer O., Pichs-Madruga R., Sokona Y., Seyboth K., Matschoss P., Kadner S., Zwickel T., Eickemeier P., Hansen G., Schlömer S., von Stechow C. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
  • 41. Kumar R., Singal S. K., Dwivedi G., Shukla A. K. 2020. Development of maintenance cost correlation for high head run of river small hydro power plant. International Journal of Ambient Energy, 1–38. DOI: 10.1080/01430750.2020.1804447.
  • 42. Lane E.W. 1955. The importance of fluvial morphology in hydraulics. Proceedings of the American Society of Civil Engineers 81(7), 1–17.
  • 43. Li J., Moe Saw M.M., Chen S., Yu H. 2020. Shortterm optimal operation of Baluchaung II hydropower plant in Myanmar. Water 12, 504. DOI: 10.3390/w12020504.
  • 44. Lino A. S., Kasper D., Guida Y. S., Thomaz J. R., Malm, O. 2019. Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajós River basin in the Brazilian Amazon. Chemosphere 235, 690–700. DOI: 10.1016/j.chemosphere.2019.06.212.
  • 45. Lopardo R.A., Seoane R. 2004. Floods control in Argentina: learning from the experience, in: River Flow, eds. Greco M., Caravetta A., Della Morte R. Taylor & Francis Group, London, 1403–1409.
  • 46. Lopes S., Vale V. , Júnior J., Schiavini I., Oliveira P. 2014. Landscape changes and habitat fragmentation associated with hidroelectric plants reservoirs: insights and perspectives from a Central Brazilian case history. Bioscience Journal 30(4), 1205–1212.
  • 47. Lucas M.C., Bubb D.H., Jang M.H., Ha K. and Masters J.E.G. 2009. Availability of and access to critical habitats in regulated rivers: effects of lowhead barriers on threatened lampreys. Freshwater Biology 54 (3), 621–634. DOI: 10.1111/j.1365–2427.2008.02136.x.
  • 48. Maddison B. 2012 Scour failure of bridges, Proceedings of the Institution of Civil Engineers – Forensic Engineering 165(1), 39–52. DOI: 10.1680/feng.2012.165.1.39.
  • 49. Madeyski M., Michalec B., Tarnawski M. 2008. Silting of small water reservoirs and quality of sediments. Infrastructure and Ecology of Rural Areas 11, 1–76.
  • 50. Mason P. 2010. How predictable are water resources?. International Water Power and Dam Construction 62(10), 12–15.
  • 51. Mioduszewski W. 2003. Mała retencja. Poradnik. Falenty, IMUZ [in Polish].
  • 52. Mishra S., Singal S., Khatod D.2012. Costing of a small hydropower projects. International Journal of Engineering and Technology 4, 239–242. DOI: 10.7763/IJET.2012.V4.357.
  • 53. Morris G. L., Fan J. 1998. Reservoir Sedimentation Manual. New York: McGraw-Hill.
  • 54. Mueller M., Pander J. Geist J. 2011. The effects of weirs on structural stream habitat and biological communities. Journal of Applied Ecology 48 (6), 1450–1461. DOI: 10.1111/j.1365–2664.2011.020 35.x.
  • 55. Oladosu S. O., Ojigi L. M., Aturuocha V. E., Anekwe C. O., Tanko R. 2019. An investigative study on the volume of sediment accumulation in Tagwai dam reservoir using bathymetric and geostatistical analysis techniques. SN Applied Sciences 1(5). DOI:10.1007/s42452–019–0393–8.
  • 56. Power M.E., Dietrich W.E., Finlay J.C. 1996. Dams and downstream aquatic biodiversity: Potential food web consequences of hydrologic and geomorphic change. Environmental Management 20, 887–895. DOI: 10.1007/BF01205969.
  • 57. Radoane M., Radoane N. 2005. Dams, sediment sources and reservoir silting in Romania. Geomorphology 71(1–2), 112–125. DOI: 10.1016/j.geomorph.2004.04.010.
  • 58. Rasekh A., Afshar A., Afshar M.H. 2010. Riskcost optimization of hydraulic structures: methodology and case study. Water Resources Management 201024(11): 2833–2851. DOI: 10.1007/s11269–010–9582–3.
  • 59. Regueiro-Picallo M., Naves J., Anta J., Suárez J., Puertas J. 2017. Monitoring accumulation sediment characteristics in full scale sewer physical model with urban wastewater. Water Science & Technology 76(1), 115–123. DOI: 10.2166/wst.2017.118.
  • 60. Rodriguez J.F. 2012. Hydropower landscapes and tourism development in the Pyrenees. From natural resource to cultural heritage. Journal of Alpine Research 100–2. DOI: 10.4000/rga.1819.
  • 61. Santos J. M., Ferreira M. T., Pinheiro A. N., Bochechas J. H. 2006. Effects of small hydropower plants on fish assemblages in medium-sized streams in central and northern Portugal. Aquatic Conservation: Marine and Freshwater Ecosystems 16(4), 373–388. DOI:10.1002/aqc.735.
  • 62. Scheuerlein H. 1999. Reservoir sedimentation. Contribution to the Tempus Course an sediment transport – theory and practical applications, 10–15.
  • 63. Schleiss A. J., Franca M. J., Juez C., De Cesare G. 2016. Reservoir sedimentation. Journal of Hydraulic Resources 54(6), 595–614. DOI: 10.1080/00221686.2016.1225320.
  • 64. Schumm S.A. 1969. River metamorphosis. Journal of Hydraulics Division of American Society of Civil Engineers 95, 255–273.
  • 65. Silva L. G. M. da, Nogueira L. B., Maia B.P., Resende L. B. de. 2012. Fish passage post-construction issues: analysis of distribution, attraction and passage efficiency metrics at the Baguari Dam fish ladder to approach the problem. Neotropical Ichthyology 10(4), 751–762. DOI: 10.1590/S1679–62252012000400008.
  • 66. Statistical Review of World Energy 2020 U.S. Energy Information Administration (2020) in United States (access online 1–30.03.2021).
  • 67. Szczykowska J., Siemieniuk A., Wiater J. 2015. Diversity of the TSI Indicators in the middle-forest small retention reservoir. Journal of Ecological Engineering 16(5), 54–61. DOI: 10.12911/22998993/60454.
  • 68. Terêncio D.P.S., Cortes R.M.V., Pacheco F.A.L., Moura J.P., Fernandes L.F.S. 2020. A method for estimating the risk of dam reservoir silting in fireprone watersheds: A study in Douro river, Portugal. Water 12, 2959. DOI: 10.3390/w12112959.
  • 69. Tkáč S. 2018. Hydro power plants, an overview of the current types and technology. Selected Scientific Papers – Journal of Civil Engineering 13, 115–126. DOI: 10.1515/sspjce-2018–0011.
  • 70. VanCleef A. 2016. Hydropower development and involuntary displacement: toward a global solution. Indiana Journal of Global Legal Studies 23(1), 349–376.
  • 71. Valero E. 2012. Characterization of the water quality status on a stretch of river Lérez around a small hydroelectric power station. Water 4, 815–834. DOI: 10.3390/w4040815.
  • 72. Von Sperling E. 2012. Hydropower in Brazil: overview of positive and negative environmental aspects. Energy Procedia 18, 110–118. DOI: 10.1016/j.egypro.2012.05.023.
  • 73. Wu W. 2007. Computational river dynamics. Taylor & Francis, London.
  • 74. Zeng X. T., Zhang S. J., Feng,J., Huang G. H., Li Y. P., Zhang P., Chen J.P., Li K. L. 2017. A multireservoir based water-hydroenergy management model for identifying the risk horizon of regional resources-energy policy under uncertainties. Energy Conversion and Management 143, 66–84. DOI: 10.1016/j.enconman.2017.02.020.
  • 75. Zeleňáková M., Fijko R., Diaconu D., Remeňáková I. 2018. Environmental impact of small hydro power plant–a case study. Environments 5, 12. DOI: 10.3390/environments5010012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8c8b6cd-2dcc-4ba0-a412-b1595b6c304f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.