PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Approximate Evaluation of BER Performance for Downlink GSVD-NOMA with Joint Maximum-likelihood Detector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Generalized Singular Value Decomposition (GSVD) is the enabling linear precoding scheme for multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) systems. In this paper, we extend research concerning downlink MIMO-NOMA systems with GSVD to cover bit terror rate (BER) performance and to derive an approximate evaluation of the average BER performance. Specifically, we deploy, AT the base station, the well-known technique of joint-modulation to generate NOMAsymbols and joint maximum-likelihood (ML) to recover the transmitted data at end user locations. Consequently, the joint ML detector offers almost the same performance, In terms of average BER as ideal successive interference cancellation. Next, we also investigate BER performance of other precoding schemes, such as zero-forcing, block diagonalization, and simultaneous triangularization, comparing them with GSVD. Furthermore, BER performance is verified in different configurations in relation to the number of antennas. In cases where the number of transmit antennas is greater than twice the number of receive antennas, average BER performance is superior.
Rocznik
Tom
Strony
25--37
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Telecommunications and Networks, University of Science, VNU-HCM, District 5, Ho Chi Minh City, Vietnam
autor
  • Department of Telecommunications and Networks, University of Science, VNU-HCM, District 5, Ho Chi Minh City, Vietnam
Bibliografia
  • [1] L. Dai, et al., “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends”, IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, 2015 (DOI:10.1109/MCOM.2015.7263349).
  • [2] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, “Nonorthogonal Multiple Access for 5G and Beyond”, Proceedings of the IEEE, vol. 105, no. 12, pp. 2347–2381, 2017 (DOI:10.1109/JPROC.2017.2768666).
  • [3] Y. Saito, et al., “Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access”, in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5, 2013 (DOI: 10.1109/VTCSpring.2013.6692652).
  • [4] K. Higuchi and A. Benjebbour, “Non-orthogonal Multiple Access (NOMA) with Successive Interference Cancellation for Future Radio Access”, IEICE Transactions on Communications, vol. E98.B, pp. 403–414, 2015 (DOI: 10.1587/transcom.E98.B.403).
  • [5] Q. Sun, S. Han, I. C-L, and Z. Pan, “On the Ergodic Capacity of MIMO NOMA Systems”, IEEE Wireless Communications Letters, vol. 4, no. 4, pp. 405–408, 2015 (DOI: 10.1109/LWC.2015.2426709).
  • [6] S. Ali, E. Hossain, and D.I. Kim, “Non-Orthogonal Multiple Access (NOMA) for Downlink Multiuser MIMO Systems: User Clustering, Beamforming, and Power Allocation”, IEEE Access, vol. 5, pp. 565–577, 2017 (DOI: 10.1109/ACCESS.2016.2646183).
  • [7] Z. Ding, R. Schober, and H.V. Poor, “A General MIMO Framework for NOMA Downlink and Uplink Transmission Based on Signal Alignment”, IEEE Transactions onWireless Communications, vol. 15, no. 6, pp. 4438–4454, 2016 (DOI: 10.1109/TWC.2016.2542066).
  • [8] H. Weingarten, Y. Steinberg, and S.S. Shamai, “The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel”, IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 3936–3964, 2006 (DOI: 10.1109/TIT.2006.880064).
  • [9] Z. Chen and X. Dai, “MED Precoding for Multiuser MIMONOMA Downlink Transmission”, IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 5501–5505, 2017 (DOI:10.1109/TVT.2016.2627218).
  • [10] A. Krishnamoorthy, Z. Ding, and R. Schober, “Precoder Design and Statistical Power Allocation for MIMO-NOMA via User-Assisted Simultaneous Diagonalization”, IEEE Transactions on Communications, vol. 69, no. 2, pp. 929–945, 2021 (DOI:10.1109/TCOMM.2020.3036453).
  • [11] D. Senaratne and C. Tellambura, “GSVD Beamforming for Two-User MIMO Downlink Channel”, IEEE Transactions on Vehicular Technology, vol. 62, no. 6, pp. 2596–2606, 2013 (DOI:10.1109/TVT.2013.2241091).
  • [12] A. Krishnamoorthy, M. Huang, and R. Schober, “Precoder Design and Power Allocation for Downlink MIMO-NOMA via Simultaneous Triangularization”, in 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, 2021 (DOI: 10.1109/WCNC49053.2021.9417424).
  • [13] Z. Chen, Z. Ding, X. Dai, and R. Schober, “Asymptotic Performance Analysis of GSVD-NOMA Systems with a Large-Scale Antenna Array”, IEEE Transactions on Wireless Communications, vol. 18, no. 1, pp. 575–590, 2019 (DOI: 10.1109/TWC.2018.2883102).
  • [14] Z. Chen, Z. Ding, and X. Dai, “On the Distribution of the Squared Generalized Singular Values and Its Applications”, IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 1030–1034, 2019 (DOI:10.1109/TVT.2018.2885122).
  • [15] M.F. Hanif and Z. Ding, “Robust Power Allocation in MIMO-NOMA Systems”, IEEE Wireless Communications Letters, vol. 8, no. 6, pp. 1541–1545, 2019 (DOI: 10.1109/LWC.2019.2926277).
  • [16] C. Rao, Z. Ding, and X. Dai, “The Distribution Characteristics of Ordered GSVD Singular Values and its Applications in MIMONOMA”, IEEE Communications Letters, vol. 24, no. 12, pp. 2719–2722, 2020 (DOI: 10.1109/LCOMM.2020.3017796).
  • [17] C. Rao, Z. Ding, and X. Dai, “GSVD-Based MIMO-NOMA Security Transmission”, IEEE Wireless Communications Letters, vol. 10, no. 7, pp. 1484–1487, 2021 (DOI: 10.1109/LWC.2021.3071365).
  • [18] Y. Qi and M. Vaezi, “Secure Transmission in MIMO-NOMA Networks”, IEEE Communications Letters, vol. 24, no. 12, pp. 2696–2700, 2020 (DOI: 10.1109/LCOMM.2020.3016999).
  • [19] X. Wang, F. Labeau, and L. Mei, “Closed-Form BER Expressions of QPSK Constellation for Uplink Non-Orthogonal Multiple Access”, IEEE Communications Letters, vol. 21, no. 10, pp. 2242–2245, 2017 (DOI: 10.1109/LCOMM.2017.2720583).
  • [20] F. Kara and H. Kaya, “BER Performances of Downlink and Uplink NOMA in the Presence of SIC Errors over Fading Channels”, IET Communications, vol. 12, no. 15, pp. 1834–1844, 2018 (DOI:10.1049/iet-com.2018.5278).
  • [21] T. Assaf, A. Al-Dweik, M.E. Moursi, and H. Zeineldin, “Exact BER Performance Analysis for Downlink NOMA Systems Over Nakagamim Fading Channels”, IEEE Access, vol. 7, pp. 134539–134555, 2019 (DOI: 10.1109/ACCESS.2019.2942113).
  • [22] J.S. Yeom, H.S. Jang, K.S. Ko, and B.C. Jung, “BER Performance of Uplink NOMA With Joint Maximum-Likelihood Detector”, IEEE Transactions on Vehicular Technology, vol. 68, no. 10, pp. 10295–10300, 2019 (DOI:10.1109/TVT.2019.2933253).
  • [23] C. Yan, et al., “Receiver Design for Downlink Non-Orthogonal Multiple Access (NOMA)”, in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–6, 2015 (DOI: 10.1109/VTCSpring. 2015.7146043).
  • [24] - “Wireless Technology Evolution Towards 5G: 3GPP release 13 to release 15 and beyond”, 2017, (https://www.5gamericas.org/wireless-technology-evolution-towards-5g-3gpp-release-13-to-release-15-and-beyond/).
  • [25] C.F. Van Loan, “A General Matrix Eigenvalue Algorithm”, SIAM Journal on Numerical Analysis, vol. 12, no. 6, pp. 819–834, 1975 (https://www.jstor.org/stable/2156413).
  • [26] A. Edelman and B.D. Sutton, “The Beta-Jacobi Matrix Model, the CS Decomposition, and Generalized Singular Value Problems”, Foundations of Computational Mathematics, vol. 8, no. 2, pp. 259–285, 2008 (DOI: 10.1007/s10208-006-0215-9).
  • [27] J. Tiefeng, “Limit theorems for beta-Jacobi ensembles”, Bernoulli, vol. 19, no. 3, pp. 1028–1046, 2013 (DOI: 10.3150/12-BEJ495, https://projecteuclid.org/journalArticle/Download?urlId=10.3150%2F12-BEJ495).
  • [28] A. Goldsmith, “Wireless Communications”, Cambridge University Press, 2005 (DOI: 10.1017/CBO9780511841224).
  • [29] D. Zwillinger and A. Jeffrey, Table of integrals, series, and products, 7th ed. Elsevier, 2007 (ISBN 978-0-12-373637-6).
  • [30] F.W.L. Oliver, D.W. Lozier, R.F. Boisvert, and C.W Clark, NIST Handbook of Mathematical Functions, 2010 (https://assets.cambridge.org/97805211/92255/copyright/9780521192255_copyright_info.pdf).
  • [31] M. Chiani, D. Dardari, and M.K. Simon, “New exponential bounds and approximations for the computation of error probability in fading channels”, IEEE Transactions on Wireless Communications, vol. 2, no. 4, pp. 840–845, 2003 (DOI: 10.1109/TWC.2003.814350).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8c7a0f6-1ebd-44f2-ae6f-8d873e98fc72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.