

STRONA INTERNETOWA jsm.gig.eu

J. Sust. Min. Vol. 12 (2013), No 2, str. 8

MODELOWANIE PRZEPŁYWU GAZU W PROCESIE PODZIEMNEGO ZGAZOWANIA WĘGLA I ICH INTERAKCJA ZE ŚRODOWISKIEM SKALNYM

Tomasz Janoszek, M. Jacek Łączny, Krzysztof Stańczyk, Adam Smoliński, Marian Wiatowski

Główny Instytut Górnictwa, e-mail: tjanoszek@gig.eu

Streszczenie

W niniejszym artykule dokonano analizy badanego zjawiska pod kątem zrozumienia zagadnienia przepływu gazów i ich interakcji z warstwą mineralną w oparciu o dostępne narzędzia informatyczne oraz wyniki eksperymentów. Zakres pracy obejmuje opracowanie modelu geometrycznego i założeń do modelu numerycznego georeaktora oraz zdefiniowanie układu trójfazowego gaz – skała – płyn w aspekcie obliczeń równowagowych, chemicznych oraz możliwości modelowania przepływu gazów w ośrodku porowatym. W prezentowanej pracy pakiet Ansys-Fluent został zaadaptowany do modelowania przepływu gazów i procesu podziemnego zgazowania węgla (PZW). Przeprowadzone symulacje oraz weryfikacje uzyskanych wyników odniesiono do dostępnych danych eksperymentalnych. Program PHREEQC został wykorzystany do analizy interakcji zachodzących między gazowymi produktami podziemnego zgazowania węgla a środowiskiem skalnym.

Słowa kluczowe

podziemne zgazowanie węgla, modelowanie numeryczne, numeryczna mechanika płynów, modelowanie geochemiczne

1. WPROWADZENIE

Technologia podziemnego zgazowania węgla (PZW) jest jedną z najbardziej obiecujących, innowacyjnych technologii związanych z eksploatacją zasobów mineralnych. Pokłady węgla, które są niedostępne z wykorzystaniem konwencjonalnych metod eksploatacji, mogą zostać przetworzone w gaz syntezowy w warunkach in situ. Tenże gaz syntezowy może być przetwarzany przez elektrownie lub przez przemysł chemiczny i może stanowić bazę do dalszych syntez chemicznych (Białecka 2008; Perkins 2005; Prabu, Jayanti 2011, 2012; Wachowicz, Janoszek, Iwaszenko 2010).

Produkty gazowe PZW mogą stanowić potencjalne zagrożenie dla środowiska przez migrację do otaczających formacji geologicznych. Gaz syntezowy inicjuje serię reakcji chemicznych w wyniku rozpuszczania się skał w wodach ze zbiorników. Szybkość reakcji chemicznych zależy od składu mineralnego warstw skalnych, składu chemicznego wód gruntowych, jak również od natężenia przepływu produktów gazowych w środowisku skalnym (Motliński, Kowalczyk 2006).

Białecka (2008) dokonała analizy aspektów oraz działań zmierzających do prawidłowego przeprowadzenia procesu zgazowania węgla w warunkach in situ oraz zidentyfikowała główne kwestie jego wdrożenia. Autorka ta poruszyła problem negatywnego wpływu procesu PZW na środowisko, głównie na wody gruntowe. Aspekty geologiczne migracji gazu zostały omówione w publikacji Chećki (2008). W oparciu o badania modelowe zaprezentowano główne parametry determinujące migrację gazów w górotworze. Kwestię modelowania procesu podziemnego zgazowania węgla omówiono w publikacjach: Hadiego i Hafeza (1986), Perkinsa (2005), Wachowicza, Janoszka i Iwaszenki (2010), Yanga (2004, 2005). Hadi i Hafez (1986) przedstawili wyniki badań modelowych procesu zgazowania węgla, ukierunkowane na możliwość prognozowania rozkładu zmian temperatury, składu gazu procesowego, rozkładu zmian ciśnienia oraz zużycia węgla. Wachowicz, Janoszek i Iwaszenko (2010) dokonali bilansu energii zjawisk termicznych towarzyszących procesowi zgazowania węgla, z zamiarem prognozowania zmian składu chemicznego gazu syntezowego, które odniesiono do wyników badań eksperymentalnych. W swoich pracach Yang (2004, 2005) zaprezentował rezultaty badań modelu procesu zgazowania wypracowanego z zamiarem prognozowania zmian składu chemicznego gazu syntezowego oraz temperatury procesu. Wyniki badań modelowych odniesiono do badań eksperymentalnych.

Umiejętność przewidywania reakcji chemicznych inicjowanych przez zjawisko transportu gazów w górotworze wydaje się być niezbędna do zwiększenia efektywności procesu PZW w warunkach in situ, również dla zminimalizowania negatywnego wpływu na szeroko pojęte środowisko wód gruntowych. Model numeryczny procesu podziemnego zgazowania węgla został opracowany z zastosowaniem oprogramowania Ansys-Fluent. Model geochemiczny środowiska wód gruntowych został stworzony za pomocą oprogramowania PHREEQC.

Ansys-Fluent jest oprogramowaniem numerycznej mechaniki płynów CFD (ang. *Computational Fluid Dynamics*) umożliwiającym modelowanie wszelkich zjawisk związanych z przepływami (spalanie, turbulencja, przepływy wielofazowe, reakcje chemiczne, przewodzenie ciepła, konwekcja itp.) z uwzględnieniem przepływu przez ośrodki porowate. (ANSYS FLUENT... 2009). PHREEQC jest programem stworzonym dla wykonywania obliczeń hydrogeochemicznych (Appelo, Postma 2005; Motliński, Kowalczyk 2006). Modelowanie przepływu gazu w procesie podziemnego zgazowania węgla oraz jego interakcja z górotworem może dostarczyć informacji na temat zjawisk fizycznych i chemicznych, które występują w warunkach temperatury i ciśnienia panującego w złożu.

2. PLAN BADAŃ MODELOWYCH

Plan badań modelowych został podzielony na dwa główne etapy:

1) modelowanie podziemnego zgazowania z zastosowaniem oprogramowania Ansys-Fluent sprowadzało się do określenia (Khadse i in. 2006; Białecka 2008; Hadi, Hafez 1986; Jaworski 2005; Perkins 2005; Yang, Liu 2003; Yang 2004, 2005):

- geometrii obiektu,
- obszaru dyskretyzacji rozwiązania numerycznego,
- właściwości fizycznych czynnika zgazowującego,
- warunków jednoznaczności rozwiązania numerycznego,
- fizycznych i chemicznych właściwości węgla.

Szukanymi parametrami rozwiązania numerycznego PZW w ujęciu metod CFD są wartości zmian składników gazu procesowego i temperatury w poszczególnych warstwach szkieletu skalnego, w warunkach symulacji procesu podziemnego zgazowania węgla (PZW).

2) modelowanie interakcji gaz syntezowy – matryca skalna – wody w programie PHREEQC jest uzyskiwane przez określenie (Appelo, Postma 2005; Motliński, Kowalczyk 2006):

- składu chemicznego wód gruntowych,
- składu mineralnego warstw skalnych.

Szukanym parametrem rozwiązania numerycznego w programie PHREEQC jest zmiana składu chemicznego wody porowej w interakcji ze środowiskiem mineralnym w obecności gazu reaktywnego w funkcji czasu trwania procesu PZW.

3. METODOLOGIA BADAŃ MODELOWYCH

Symulację procesu podziemnego zgazowania węgla oparto na symulacji przepływu reaktywnego płynu wzdłuż kanału zgazowujacego o zadanej geometrii. Symulacji podlegają zjawiska fizyczne związane z transportem masy i energii oraz zachodzące reakcje chemiczne (wraz z towarzyszącym efektem energetycznym). Metoda funkcji gęstości prawdopodobieństwa (PDF) została zaadoptowana do modelowania reakcji chemicznych procesu zgazowania węgla. Części lotne z węgla dostarczane są do strefy reakcji (kanału zgazowującego) w postaci pojedynczego strumienia paliwa, gdzie reagują z czynnikiem zgazowującym (mieszaniną tlenu i pary wodnej). Równanie równowagi chemicznej zostało użyte do obliczenia składu gazu (ANSYS FLUENT... 2009; Jaworski 2005). Pokład węgla oraz warstwy skalne traktowane są jako ośrodek jednorodny o zmiennych parametrach efektywnych ośrodka porowatego oraz parametrów przewodzenia ciepła. Ze względu na złożoność równań oraz metod numerycznych, zdecydowano się na wykorzystanie kodu Ansys-Fluent do przeprowadzenia obliczeń numerycznych procesu PZW.

3.1. Model georeaktora

Dla celów realizowanych badań modelowych przyjęto, że georeaktor będzie stanowił wyodrębniony obszar calizny

węglowej zlokalizowanej w pokładzie 610 na obszarze Górnośląskiego Zagłębia Węglowego (GZW) (Bukowska 2005). Przybliżony profil litostratygraficznym pokładu 610 i otaczających warstw skalnych przedstawiono na rysunku 1.

 $\textbf{Rys. 1.} Model \ geometryczny \ georeaktora \ i \ otaczajacych \ warstw \ skalnych$

Ponadto przyjęto, że warstwa piaskowca będzie kształtowana głównie przez kwarc i chalcedon, w których zawartość wspomnianych frakcji mineralnych wynosi 35% (rys. 2a), warstwę iłowca kształtuje illit w ilości do 64% (rys. 2b), natomiast warstwę mułowca kształtuje głównie kaolinit i illit, w ilości do 30% (rys. 2c) (Strzyszcz, Harabin 2004).

Warstwy skalne w modelowym rejonie georeaktora utworzone są z poniższych formacji geologicznych:

- warstwa piaskowca o grubości od 3,3 do 40 m (rys. 1), ze znacznymi ilościami kwarcu i chalcedonu (rys. 2a),
- warstwa iłowca o grubości od 1,7 do 6,75 m (rys. 1), ze znaczną ilością illitu (rys. 2b),
- warstwa mułowca o grubości 10 m (rys. 2), ze znacznymi ilościami kaolinitu i illitu (rys. 2c).

Geometria georeaktora została określona na podstawie poniższych założeń (rys. 1):

- model przestrzenny georeaktora 2,5 m × 2,5 m × 1,25 m,
- model przestrzenny mułowca 2,5 m \times 2,5 m \times 10 m,
- model przestrzenny piaskowca 2,5 m × 2,5 m × 3,3 m i 2,5 m × 2,5 m × 40 m,
- model przestrzenny iłowca 2,5 m × 2,5 m × 1,7 m i 2,5 m × 2,5 m × 6,75 m.

Model geometryczny georeaktora pokazano na rysunku 3 (Stańczyk i in. 2009, 2010).

Rys. 2. Charakterystyka frakcji mineralnych tworzących warstwy skalne: a - piaskowiec, b - iłowiec, c - mułowiec

Rys. 3. Model geometryczny georeaktora

3.2. Dyskretyzacja

10

Następnym etapem po opracowaniu modelu przestrzennego georeaktora jest jego dyskretyzacja. Dyskretyzacja jest procesem tworzenia numerycznego obszaru rozwiązania (Jaworski 2005). Wyniki opracowanej siatki numerycznej pokazano na rysunku 4.

Zdecydowano o wygenerowaniu następujących rodzajów siatek numerycznych, a mianowicie:

 siatki numerycznej modelu bryłowego warstwy piaskowca (o grubości 40 m), utworzonej z 1725 węzłów połączonych 1088 elementami prostymi, odzwierciedlając obszar zajmowany przez ciało stałe o objętości 250 m³ – rys. 4a,

- siatki numerycznej modelu bryłowego warstwy iłowca (o grubości 6,75 m), utworzonej z 35 712 węzłów połączonych 32 269 elementami prostymi, odzwierciedlając obszar zajmowany przez ciało stałe o objętości 42,18 m³ – rys. 4b,
- siatki numerycznej modelu bryłowego pokładu węgla (o grubości 1,25 m), utworzonej z 53 016 węzłów połączonych 48 622 elementami prostymi, odzwierciedlając obszar zajmowany przez ciało stałe o objętości 7,80 m³ – rys. 4c,
- siatki numerycznej modelu bryłowego kanału zgazowującego, utworzonej z 621 węzłów połączonych 272 elementami prostymi, odzwierciedlając obszar zajmowany przez płyn o objętości 0,012 m³ rys. 4d,
- siatki numerycznej modelu bryłowego warstwy iłowca (o grubości 1,7 m) utworzonej z 62 775 węzłów połączonych 58 080 elementami prostymi, odzwierciedlając obszar zajmowany przez ciało stałe o objętości 10 625 m³ – rys. 4e,
- siatki numerycznej modelu bryłowego warstwy piaskowca (o grubości 3,3 m), utworzonej z 62 208 węzłów połączonych 57 575 elementami prostymi, odzwierciedlając obszar zajmowany przez ciało stałe o objętości 20 625 m³ – rys. 4f,
- siatki numerycznej modelu bryłowego warstwy mułowca (o grubości 10 m), utworzonej z 19 074 węzłów połączonych 16 640 elementami prostymi, odzwierciedlając obszar zajmowany przez ciało stałe o objętości 62,5 m³ – rys. 4g.

Rys. 4. Siatka numeryczna georeaktora i warstw skalnych: a – 40 m warstwa piaskowca, b – 6,75 m warstwa iłowca, c – 1,25 m pokład węgla, d – panel zgazowania, e – 1,7 m warstwa iłowca, f – 3,3 m warstwa piaskowca, g – 10 m warstwa mułowca

3.3. Warunki jednoznaczności rozwiązania numerycznego

Rysunek 5 przedstawia schemat układu pomiarowego, utworzony dla potrzeb monitorowania zmian temperatury gazu wzdłuż kanału zgazowującego (pkt. 1–5). Układ pomiarowy składu CH₄, CO₂, CO i H₂ gazu procesowego zlokalizowano na wylocie z reaktora (Stańczyk i in. 2009, 2010).

Rys. 5. System pomiarowy wybranych parametrów pracy georeaktora

Pomiary zmian profilu temperaturowego monitorowano wzdłuż kanału zgazowującego w pięciu punktach pomiarowych, w różnych odległościach od wlotu do georeaktora, w następujący sposób (rys. 5) (Stańczyk i in. 2009, 2010):

- punkt 1 − 0,3 m,
- punkt 2 0,8 m,
- punkt 3 1,3 m,
- punkt 4 1,8 m,
- punkt 5 2,3 m.

Uwzględniono następujące lokalne warunki jednoznaczności rozwiązania numerycznego, osobno dla każdego z obszarów dyskretyzacji, a mianowicie:

1) kanał zgazowujący:

- temperatura i wartość strumienia masy O₂ 25°C według zależności: $\dot{m} = \dot{m}_0 + 5\sin(4t)$ (\dot{m}_0 – wartość strumienia w chwili t = 0, t - czas) (Stańczyk i in. 2009, 2010),
- ciepło właściwe O₂ c_{pO2} (ANSYS FLUENT... 2009) - $cp_{O2} = 834\ 826 + 0.292T - 0.0001495T^2 + 3.41e - 07T^3$ - $2.27 \cdot 10 - 10T^4$ [Jkg⁻¹K⁻¹],
- temperatura i wartość strumienia masy H₂O 100°C według zależności: $\dot{m} = \dot{m}_0 + 5\sin(4t)$ (\dot{m}_0 – wartość strumienia w chwili t = 0, t - czas) (Stańczyk i in. 2009, 2010),
- ciepło właściwe pary wodnej H₂O c_{pH2O} według zależności (ANSYS FLUENT... 2009): cp_{H2O} = 1563,08 +

- + 1,60*T* 0,002932794 T^2 + 3,21·10 6 T^3 -1,15·10 9 T^4 [J·kg⁻¹·K⁻¹],
- przewodność cieplna mieszaniny tlen-para wodna - 0,0454 [W·m⁻¹·K⁻¹] (ANSYS FLUENT... 2009),
- lepkość dynamiczna mieszaniny tlen-para wodna 1,72e⁻⁰⁵ [kgm⁻¹·s⁻¹] (ANSYS FLUENT... 2009).
- 2) pokład węgla (ośrodek porowaty):
 - szybkość ubytku masy węgla 4 kg·h⁻¹ (Stańczyk i in. 2009, 2010),
 - gęstość 1400 kg·m⁻³ (Perkins 2005),
 - porowatość węgla według zależności: $\varphi = 0,2286 + 0,01041T + 0,00001786T^2$ [%] (*T* temperatura, °C) (Białecka 2008),
 - przepuszczalność $\beta 1e^{-15} [m^2]$ (Chećko 2008),
 - ciepło właściwe węgla cp_C według zależności: (AN-SYS FLUENT... 2009) - $cp_C = -464,18 + 4,97T - 0,003899261T^2 + 1,482 \cdot 10 - 6T^3 - 2,885 \cdot 10 - 10T^4$ [Jkg⁻¹K⁻¹],
 - temperatura początkowa T 298,15 K,
 - przewodność cieplna $0.9 \text{ W} \text{m}^{-1} \text{K}^{-1}$ (Perkins 2005),
 - analizę techniczno-elementarną węgla przedstawiono w tabeli 1.

Tabela 1. Analiza techniczno-elementarna węgla

Analiza przybliżona	węgiel	63,83%			
	części lotne	32,41%			
	popiół	2,21%			
	wilgotność	1,55%			
Analiza elementarna	węgiel (C)	83,84%			
	wodór (H)	4,94%			
	tlen (O)	9,79%			
	azot (N)	1,15%			
	siarka (S)	0,28%			
Ciepło spalania	3,54e⁺7 J⋅kg ⁻¹				

3) warstwa piaskowca (ośrodek porowaty) (Chećko 2008):

- gęstość 2690 kg·m⁻³,
- porowatość -0,6%,
- przepuszczalność β $1e^{-14}$ m²,
- ciepło właściwe 1320 J $kg^{-1}K^{-1}$,
- temperatura początkowa T 298,15 K (Stańczyk i in. 2009, 2010),
- przewodność cieplna według zależności (Jian i in. 2011) – $\lambda = 1,34053 - 0,00106T + 5,48226 \cdot 10^{-7}T^2$ [Wm⁻¹·K⁻¹].

4) warstwa iłowca (ośrodek porowaty) (Chećko 2008):

- gęstość 2790 kg·m⁻³,
- porowatość -2,6%,
- przepuszczalność $\beta 1e^{-15} m^2$,

- ciepło właściwe $800 \text{ J} \text{kg}^{-1} \text{K}^{-1}$,
- temperatura początkowa T 298,15 K,
- przewodność cieplna według zależności (Jian i in. 2011): $\lambda = 1,18965 0,0006007T + 3,41831 \cdot 10^{-7}T^2$ [Wm⁻¹·K⁻¹].
- 5) warstwa mułowca (ośrodek porowaty) (Chećko 2008):
 - gęstość 2600 kg·m⁻³,
 - porowatość 5%,
 - przepuszczalność $\beta 2e^{-15} m^2$,
 - ciepło właściwe $1000 \text{ J}\cdot\text{kg}^{-1}\cdot\text{K}^{-1}$,
 - temperatura początkowa T 298,5 K,
 - przewodność cieplna według zależności (Jian i in. 2011): $\lambda = 1,23052 0,00066644T + 2,54137 \cdot 10^{-7}T^2$ [W·m⁻¹·K⁻¹].

Rozpatrzono następujące ustawienia globalne (systemowe) w programie Ansys-Fluent, a mianowicie:

- stan nieustalony,
- ciśnienie zgazowania 101 325 Pa,
- model turbulencji standardowy k-ε,
- model reakcji zgazowania- model PDF,
- model wymiany ciepła model DO,
- przyśpieszenie ziemskie $-9,81 \text{ m}\cdot\text{s}-2$,
- zjawiska w skali czasowej 252 000 s (70 godz.),
- chropowatość względna kanału zgazowującego 0,1 m,
- zbieżność obliczeń 1·10⁻⁴.

4. WYNIKI SYMULACJI PZW

Poniżej na wykresach przedstawiono wartości zmian głównych składników gazu syntezowego (CH₄, CO₂, CO i H₂) oraz wartości zmian temperatury z pomiarów na układzie rzeczywistym oraz z modelu numerycznego CFD.

Wyniki prezentowane na rysunku 6 uzyskano w warunkach pomiaru gazu syntezowego na wylocie z rzeczywistego reaktora. Natomiast wyniki prezentowane na rysunku 7 uzyskano podczas pomiarów wzdłuż kanału zgazowującego w pięciu punktach pomiarowych, w różnych odległościach od wlotu reaktora, za pomocą termopar rozmieszczonych co 0,5 m w osi kanału zgazowującego.

4.1. Przepływ gazu syntezowego w górotworze

Na rysunkach 8–12 przedstawiono wykresy rozkładu zmian średnich wartości stężenia składników gazu procesowego oraz temperatury w poszczególnych warstwach modelowego górotworu, w funkcji czasu trwania procesu PZW.

Rys. 6. Zmiana zawartości składników gazu syntezowego w przedziale czasowym 70 godzin, w oparciu o wartości mierzone w reaktorze oraz uzyskane z modelu: a – CO₂, b – CO, c – H₂, d – CH₄

Rys. 7. Zmiana temperatury rejestrowana przez termoparę: 1 (rys. 7a), 2 (rys. 7b), 3 (rys. 7c), 4 (rys. 7d) i 5 (rys. 7e), uzyskana z reaktora eksperymentalnego i z modelu

Rys. 8. Analiza ilościowa średniej temperatury i stężenia składników gazu w warstwie piaskowca o grubości 40 m w przedziale czasowym 70 godzin: a – temperatura, b – CO₂, c – CO, d – CH₄, e – H₂

Rys. 9. Analiza ilościowa średniej temperatury i stężenia składników gazu w warstwie iłowca o grubości 6,75 m w przedziale czasowym 70 godzin: a – temperatura, b – CO₂, c – CO, d – CH₄, e – H₂

Rys. 10. Analiza ilościowa średniej temperatury i stężenia składników gazu w warstwie iłowca o grubości 1,7 m w przedziale czasowym 70 godzin: a – temperatura, b – CO₂, c – CO, d – CH₄, e – H₂

Rys. 11. Analiza ilościowa średniej temperatury i stężenia składników gazu w warstwie mułowca o grubości 10 m w przedziale czasowym 70 godzin: a – temperatura, b – CO₂, c – CO, d – CH₄, e – H₂

Rys. 12. Analiza ilościowa średniej temperatury i stęzenia składników gazu w warstwie mułowca o grubości 3,3 m w przedziale czasowym 70 godzin: a – temperatura, b – CO₂, c – CO, d – CH₄, e – H₂

5. MODELOWANIE GEOCHEMICZNEGO WZAJEMNEGO ODDZIAŁYWANIA SKAŁ, WODY I GAZU

Analizę procesów geochemicznych, jakie mogą zaistnieć między matrycą skalną, wodami gruntowymi a gazem syntezowym wykonano z zastosowaniem oprogramowania PHREEQC. Program pozwala na wykonywanie szeregu obliczeń i symulacji, tj.: rozkładu specjacji i wskaźników nasycenia, reakcji rozpuszczania i wytrącania minerałów, wymiany jonowej, kompleksowania powierzchniowego, procesów kinetycznych oraz transportu jednowymiarowego (Appelo, Postma 2005).

5.1. Skład chemiczny wody

Dla potrzeb opracowania modelu geochemicznego przyjęto następujące średnie stężenie głównych składników wód (Pluta 2005):

- $2,0 \text{ mg} \cdot \text{dm}^{-3} (1,85e^{-4} \text{ mol} \cdot \text{dm}^{-3})$ boronu (B),
- 0,15 mg·dm⁻³ (1.13e⁻⁶ mol·dm⁻³) baru (Ba),
- 27 724,25 mg·dm⁻³ (7,82e⁻¹ mol·dm⁻³) jonu chlorkowego (Cl⁻),

- $4,67 \text{ mg} \cdot \text{dm}^{-3} (8,37 \text{e}^{-5} \text{ mol} \cdot \text{dm}^{-3}) \text{ jonu żelaza (Fe}^{2+}),$
- 157,72 mg·dm⁻³ (4,03e⁻³ mol·dm⁻³) jonu potasu (K⁺),
- 18 132,21 mg·dm⁻³ (7,89e⁻¹ mol·dm⁻³) jonu sodu (Na⁺),
- $175,50 \text{ mg} \cdot \text{dm}^{-3} (5,47\text{e}^{-3} \text{ mol} \cdot \text{dm}^{-3})$ jonu siarczanu (SO₄²⁻).

Powyższe wartości zostały zaimplementowane do modelu geochemicznego opracowanego w programie PHREEQC, jako roztwór modelowy o uśrednionym składzie, bazując na wynikach badań z pracy Pluty (2005).

Rysunki 13–17 prezentują prognozowane zmiany składu wód infiltracyjnych w warunkach równowagi termodynamicznej, zaburzonej migracją reaktywnych składników gazu procesowego w postaci mieszaniny CH₄, CO₂, CO, H₂. Przekroczone zostały następujące wskaźniki:

- pH,
- stężenie jonów K⁺ i Fe2⁺ zaobserwowane w piaskowcu (rys. 13 i rys. 15) i w warstwie iłowca (rys. 14),
- stężenie jonów SO₄² zaobserwowane w piaskowcu (rys. 13 i rys. 15),
- stężenie jonów Cl⁻ and Na⁺ zaobserwowane we wszystkich warstwach.

Tapela 2. Skład mineralny warstw s	skainvcn	otaczalacych	deoreaktor
------------------------------------	----------	--------------	------------

Warstwa	Stężenie [molL-1]										
	kwarc	chalcedon	skalenie	miki	chloryty	kalcyt	dolomit	syderyt	aragonit	klinit	illity
Piaskowiec	15	15	1,063	0,047	0,034	0,146	0,079	0,126	0,146	0,432	0,144
lłowiec	1,440	1,440	0,2	0,035	0,595	0,153	0,083	0,132	0,153	1,281	2,276
Mułowiec	4,73	4.73	1.266	0.034	0.025	0.325	0.189	0.301	0.348	3.021	0.974

Rys. 13. Analiza ilościowa zmian pH oraz składników wody gruntowej, jako wynik migracji gazu syntezowego w warstwie piaskowca o grubości 40 m w przedziale czasowym 70 godzin: a – Na*, K* i Cl⁺, b – Fe²* i SO4²⁻, c – pH

Rys. 14. Analiza ilościowa zmian pH oraz składników wody gruntowej jako wynik migracji gazu syntezowego w warstwie iłowca o grubości 6,75 m w przedziale czasowym 70 godzin: a – Na*, K* i Cl⁻, b – Fe²⁺ i SO4²⁻, c – pH

Rys. 15. Analiza ilościowa zmian pH oraz składników wody gruntowej, jako wynik migracji gazu syntezowego w warstwie iłowca o grubości 1,75 m w przedziale czasowym 70 godzin: a – Na*, K* i Cl-, b – Fe²⁺ i SO4²⁻, c – pH

Rys. 16. Analiza ilościowa zmian pH oraz składników wody gruntowej, jako wynik migracji gazu syntezowego w warstwie piaskowca o grubości 3,3 m w przedziale czasowym 70 godzin: a – Na*, K* i CI-, b – Fe²+ i SO4²-, c – pH

Rys. 17. Analiza ilościowa zmian pH oraz składników wody gruntowej, jako wynik migracji gazu syntezowego w warstwie mułowca o grubości 10 m w przedziale czasowym 70 godzin: a – Na*, K* i Cl⁻, b – Fe²⁺ i SO4²⁻, c – pH

6. PODSUMOWANIE I WNIOSKI

W pracy skorzystano z możliwości programu Ansys-DesignModeler, w którym wykonano model przestrzenny georeaktora oraz otaczających warstw skalnych. Kolejnym krokiem było zaimportowanie wykonanego modelu 3D do programu Ansys-Fluent. Na jego podstawie wyodrębniono obszar dyskretyzacji, który następnie posłużył do opracowania modelu numerycznego procesu PZW. Uzyskane dane modelowe odniesiono do wyników badań doświadczalnych. Następnie uzyskane z modelu numerycznego procesu PZW informacje odnośnie do zmian temperatury i stężenia składników gazu syntezowego w modelowym otoczeniu georeaktora, posłużyły jako dane wejściowe do modelu geochemicznego opracowanego w programie PHREEQC.

Przedstawione wyniki badań modelowych w pracy pozwalają na sformułowanie następujących wniosków:

- Kontakt wód złożowych z gazem syntezowym powoduje rozpuszczenie jednych i wytrącenie innych składników mineralnych ze skał budujących otoczenie georeaktora. Reakcje chemiczne, jakie występują w matrycy skalnej, zależą od jej składu mineralnego, tekstury skał, właściwości filtracyjnych, temperatury i ciśnienia, prędkości przepływu gazu procesowego oraz składu chemicznego wód porowych.
- 2. Ze względu na trudności wynikające z wyboru właściwego sposobu realizacji i prowadzenia procesu zgazowania węgla (PZW) związanego z odpowiednim doborem takich parametrów procesu jak: ciśnienie, skład medium zgazowującego oraz temperatura, uzasadnione jest, aby każdorazowo analizować efektywność przyjętego rozwiązania projektowego układu georeaktora z zastosowaniem omawianych narzędzi informatycznych.
- Ansys-Fluent okazał się przydatnym narzędziem pozwalającym na tworzenie prostych modeli procesu zgazowania

węgla zachodzących w różnych warunkach, a w szczególności procesu zachodzącego pod powierzchnią ziemi.

4. Wyznaczone z modelu numerycznego CFD procesu PZW wartości zmiennych wyjściowych pozwoliły na opracowanie modelu reakcyjności i transportu geochemicznego w programie PHREEQC w warunkach migracji gazu procesowego do otaczających skał.

Podziękowania

Artykuł został przygotowany w oparciu o badania przeprowadzone w ramach pracy nr 13410311-350 finansowanej przez Ministerstwo Nauki i Szkolnictwa Wyższego.

Literatura

- 1. Appelo C.A.J., Postma D. (2005): Geochemistry, groundwater and pollution. Amsterdam, Routledge Chapman & Hall.
- 2. ANSYS FLUENT 12.0 UDF Manual (2009): ANSYS, Inc.
- Khadse A.N., Qayyumi M., Sanjay M.M., Aghalayam P. (2006): Reactor Model for the Underground Coal Gasification (UCG) Channel. International Journal of Chemical Reactor Engineering Vol. 4, Iss. 1. DOI: 10.2202/1542-6580.1351.
- 4. Białecka B. (2008): Podziemne zgazowanie węgla podstawy procesu decyzyjnego. Katowice, Główny Instytut Górnictwa.
- Bukowska M. (2005): Prognozowanie skłonności do tąpań górotworu metodą wskaźnikowej oceny geologiczno-geomechanicznej w warunkach Górnośląskiego Zagłębia Węglowego. Prace Naukowe Głównego Instytutu Górnictwa nr 866.
- Chećko J. (2008): Geologiczne aspekty migracji gazów kopalnianych na powierzchnię w przypadku likwidacji kopalń węgla kamiennego. Nowy Przemysł (online).
- 7. Hadi A.A., Hafez E.A. (1986): Computer modelling of underground coal gasification. Science and Engineering Vol. 46, No 11.
- Jaworski Z. (2005): Numeryczna mechanika płynów w inżynierii procesowej i chemicznej. Warszawa, Akademicka Oficyna Wydawnicza EXIT.
- Jian L., Lianguo W., Furong T., Yan H., Lin Z. (2011): Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification. Mining Science and

Technology (Chine) Vol. 21, s. 709–713. DOI: 10.1016/j.mstc. 2011.03.005.

- Motliński K., Kowalczyk A. (2006): Modelowanie utleniania pirytu z wykorzystaniem programów PHREEQC i PHAST. Geologos (10) (online).
- 11.Perkins G. (2005): Mathematical modelling of Underground Coal Gasification. Submitted in fulfilment of the requirements for the degree of Ph.D. University of New South Wales.
- Pluta I. (2005): Wody kopalń Górnośląskiego Zagłębia Węglowego – geneza, zanieczyszczenia i metody oczyszczania. Prace Naukowe Głównego Instytutu Górnictwa nr 865.
- 13.Prabu V., Jayanti S. (2012): Laboratory scale studies on simulated underground coal gasification of high ash coals for carbonneutral power generation. Energy Vol. 46(1), s. 351–358. DOI: 10.1016/j.energy.2012.08.016.
- 14.Prabu V., Jayanti S. (2011): Simulation of cavity formation in underground coal gasification using bore-hole combustion experiments. Energy Vol. 36(10), s. 5854–5864. DOI: 10.1016/ j.energy.2011.08.037.
- 15.Stańczyk K., Cybulski K., Rogut J., Świądrowski J., Kapusta K., Jędrysik E., Mutke G., Chećko J., Chodacki J., Wiatowski M., Grabowski J., Nowak D., Tokarz A., Ludwik-Pardała M., Smoliński A. (2009): Hydrogen Oriented Underground Coal Gasification for Europe. The Third Six-Monthly Technical Implementation Report. Research Programme of the Research Fund for Coal and Steel. Katowice, Główny Instytut Górnictwa.

- 16.Stańczyk K., Smoliński A., Kapusta K., Wiatowski M., Świądrowski J., Kotyrba A., Rogut J. (2010): Dynamic Experimental Simulation of Hydrogen Oriented Underground Coal Gasification. Fuel Vol. 89, s. 3307–3314.
- 17.Stańczyk K., Kapusta K. (2011): Pollution of Water During Underground Coal Gasification of Hard Coal and Lignite. Fuel. Vol. 90, s. 1927–1934. DOI: 10.1016/j.fuel.2010.11.025.
- 18.Strzyszcz Z., Harabin Z. (2004): Rekultywacja i biologiczne zagospodarowanie odpadów górnictwa węgla kamiennego ze szczególnym uwzględnieniem centralnych zwałowisk. Zabrze, IPIŚ PAN.
- Wachowicz J., Janoszek T., Iwaszenko S. (2010): Model Tests of the Coal Gasification Process. Archives of Mining Sciences Vol. 55, issue 2, s. 249–262.
- 20.Yang L.H., Liu S. (2003): Numerical Simulation of Heat and Mass Transfer in the Process of Underground Coal Gasification. Numerical Heat Transfer Vol. 44, No 5, s. 537–557.
- Yang L.H. (2005): Numerical Study on the Underground Coal Gasification for Inclined Seams. Environmental and Energy Engineering Vol. 51(11), s. 3059–3071. DOI: 10.1002/aic. 10554.
- 22.Yang L. (2004): Study on the model experiment and numerical simulation for underground coal gasification. Fuel Vol. 83, s. 573–584. DOI: 10.1016/j.fuel.2003.08.011.