Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Human activities predominantly depend on hydrocarbons, which are essential resources and pivotal drivers of economic growth and development in many nations. Countries with substantial hydrocarbon reserves have capitalized on these resources to generate wealth. However, the complex physicochemical properties of hydrocarbons pose significant risks to both human safety and environmental integrity. Hazard studies conducted across various Algerian oil (NAFTAL) regions, particularly at CBR (cost-benefit ratio) industrial sites, indicate that the primary dangers involve fire and explosion. Investigations into accidents within the ARV (Arrival) terminal zone have identified a strong correlation with hydrocarbon storage practices. This work aims to evaluate the risks associated with specific phenomena linked to the storage of gas oil products. To perform a semi-quantitative risk analysis of potential accident scenarios, we employed the hazard and operability study (HAZOP) method, alongside a detailed examination of possible incidents using the Fault Tree method (FTM). This approach elucidates the causes and consequences of undesirable events. Furthermore, we assessed the risks posed by these adverse scenarios and their implications for nearby reservoir areas. Using Areal Locations of Hazardous Atmospheres (ALOHA) software for simulation, we illustrated the identified scenarios and delineated the threat zones surrounding the S11 tank.
Rocznik
Tom
Strony
art. no. e152705
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Transportation Engineering Department, University Constantine, 1 – Brothers Mentouri, Algeria
autor
- Electrotechnic Department of Constantine, University Constantine, 1 – Brothers Mentouri, Algeria
Bibliografia
- [1] X. Hu et al., “Quantitative Risk Assessment of LPG Tank Area,” Proc. 7th International Conference on Energy, Environment and Sustainable Development, Advances in Engineering Research, 163 (2018).
- [2] S. Baesi, B. Abdolhamidzadeh, C.R.C. Hassan, M.D. Hamid, and G. Reniers, “Application of a multi-plant QRA: A case study investigating the risk impact of the construction of a new plant on an existing chemical plant’s risk levels,” J. Loss Prev. Process Ind., vol. 26, no. 5, pp. 895–903, 2013.
- [3] H. Pasman and G. Reniers, “Past, present and future of Quantitative Risk Assessment (QRA) and the incentive it obtained from Land-Use Planning (LUP),” J. Loss Prev. Process Ind., vol. 28, pp. 2–9, 2014.
- [4] K. Guerfi and Y. Boulaghraif, “Analyse quantitative et simulation numérique par le logiciel ALOHA du dysfonctionnement d’un réservoir de stockage du carburant,” MSc Thesis, Département Génie des Transports, 2022.
- [5] J. Isimite and P. Rubini, “A dynamic HAZOP case study using the Texas City refinery explosion,” J. Loss Prev. Process Ind., vol. 40, pp. 496–501, 2016, doi: 10.1016/j.jlp.2016.01.025.
- [6] Q. Wang et al., “A dynamic assessment method for risk evolution in chemical processes based on MFM-HAZOP-FDBN,” Chem. Eng. Res. Des., vol. 204, pp. 471–486, 2024, doi: 10.1016/j.cherd.2024.02.049.
- [7] P.K. Marhavilas, M. Filippidis, G.K. Koulinas, and D.E. Koulouriotis, “An expanded HAZOP-study with fuzzy-AHP (XPA-HAZOP technique): Application in a sour crude-oil processing plant,” Safety Sci., vol. 124, p. 104590, Apr. 2020, doi: 10.1016/j.ssci.2019.104590.
- [8] J.W. Chastain, P. Delanoy, C. Devlin, T. Mueller, and K. Study, “Beyond HAZOP and LOPA: Four different company approaches,” Process Saf. Prog., vol. 36, no. 1, pp. 38–53, 2016, doi: 10.1002/prs.11831.
- [9] S. Yuan, J. Cai, G. Reniers, M. Yang, C. Chen, and J. Wu, “Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios,” Reliab. Eng. Syst. Saf., vol. 226, p. 108719, 2022, doi: 10.1016/j.ress.2022.108719.
- [10] L. Cui, J. Zhao, and R. Zhang, “The integration of HAZOP expert system and piping and instrumentation diagrams,” Process Saf. Environ. Protect., vol. 88, no. 5, pp. 327–334, 2010, doi: 10.1016/j.psep.2010.04.002.
- [11] M.F. Chia and P.K. Naraharisetti, “HAZOP using Stateflow software: Methodology and case study,” Process Saf. Environ. Protect., vol. 179, pp. 137–156, doi: 10.1016/j.psep.2023.09.005.
- [12] J.M. Kościelny, M. Syfert, B. Fajdek, and A. Kozak, “The application of a graph of a process in HAZOP analysis in accident prevention system,” J. Loss Prev. Process Ind., vol. 50, Part A, pp. 55–66, 2017, doi: 10.1016/j.jlp.2017.09.003.
- [13] M.J. Gharabagh et al., “Comprehensive risk assessment and management of petrochemical feed and product transportation pipelines,” J. Loss Prev. Process Ind., vol. 22, no. 4, pp. 533–539, 2009, doi: 10.1016/j.jlp.2009.03.008.
- [14] H. Iskender, “HAZOP and ALOHA Analysis of Acetone,” Acad. Perspect. Procedia, vol. 3, no. 2, pp. 927–934, 2020, doi: 10.33793/acperpro.03.02.30.
- [15] R. Bhattacharya and V. Ganesh Kumar, “Consequence analysis for simulation of hazardous chemicals release using ALOHA software,” Int. J. Chem. Tech. Res., vol. 8, no. 4, 2038–2046, 2015.
- [16] Buyukkidan et al., “The Risk Calculation of Hazardous Zones Created by Flammable and Explosive Chemicals, LPG Tank Example,” Acad. Platf. J. Nat. Hazards Disaster Manag., vol. 2, no. 2, pp. 47–62, 2021, doi: 10.52114/apjhad.1024396.
- [17] H.-S. Kim, “Comparative Analysis for Risks of Small LPG Storage Tanks Using Damage Prediction Program,” RES Militaris, vol. 12, no. 2, pp. 2684–2694, 2022.
- [18] F. Heymes, P. Laureta, and P. Hoorelbekeb, “An Experimental Study of Water BLEVE,” Chem. Eng. Trans., vol. 77, 2019, doi: 10.3303/CET1977035.
- [19] S. Bajpayee and S. Nag, “Threat and Risk Analysis Based Neural Network for Chemical Explosion (TRANCE) Model to Predict Hazards in Oil Refinery,” J. Loss Prev. Process Ind., vol. 59, pp. 1–12, 2019.
- [20] Naftal, Report Naftal El Khroub CBR, 2022 [online] Available: https://www.yumpu.com/fr/document/view/16695116/branche-carburants-accueil-naftal
- [21] A. Akni et al., “Contribution to the Evaluation of Safety Barriers at the Treatment Section ‘STRIPPER’,” Recent J., vol. 62, pp. 100–111, 2020, doi: 10.31926/RECENT.2020.62.100.
- [22] M.S. Ekinci, et al., “The Effect of Storage Temperature on Threat Zone Caused by an Ammonia Release from a Storage Tank,” Hittite J. Sci. Eng., vol. 9, no. 2, pp. 125–132, 2022, doi: 10.17350/HJSE19030000263.
- [23] P. Patel and N. Sohani, “Hazard evaluation using ALOHA tool in storage area of an oil refinery,” Int. J. Res. Eng. Technol., vol. 4, no. 12, pp. 203–209, Dec. 2015.
- [24] P. Dadkani, et al., “Risk analysis of gas leakage in gas pressure reduction station and its consequences: A case study for Zahedan,” Heliyon, vol. 7, p. e06911, 2021.
- [25] AIChE Center of Chemical Process Safety, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs, 1994.
- [26] Akni A., Méthodes qualitatives et quantitatives d’analyse des risques, Édition Universitaire Européenne, 2018.
- [27] C. Salvatore et al., “Resilience-based optimal firefighting to prevent domino effects in process plants,” J. Loss Prev. Process Ind., vol. 58, 82–89, 2019, doi: 10.1016/j.jlp.2019.02.004.
- [28] ALOHA Code Application Guidance for Documented Safety Analysis Final Report. [Online] Available: https://www.energy.gov/sites/prod/files/2013/09/f2/Final_ALOHA_Guidance_Reportv52404.pdf
- [29] H. Shao and G. Duan, “Risk quantitative calculation and ALOHA simulation on the leakage accident of natural gas power plant,” Procedia Eng., vol. 45, pp. 352–359, 2012.
- [30] L.R.J. Gabhane et al., “An Environmental Risk Assessment Using Neural Network in Liquefied Petroleum Gas Terminal,” Toxics, vol. 11, no. 4, p. 348, 2023, doi: 10.3390/toxics11040348.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8c3b812-5c94-4e23-a06a-42a3b4fb1587
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.