Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
By computer algebra technique and computer computations, we solve the mesh morsification problems 1.10 and present a classification of irreducible mesh roots systems, for some of the simply-laced Dynkin diagramsΔ ∈ {An,Dn, E6, E7,E8}. The methods we use show an importance of computer algebra tools in solving difficult modern algebra problems of enough high complexity that had no solution by means of standard theoretical tools only. Inspired by results of Sato [Linear Algebra Appl. 406(2005), 99-108] and a mesh quiver description of indecomposable representations of finite-dimensional algebras and their derived categories explained in [London Math. Soc. Lecture Notes Series, Vol. 119, 1988] and [Fund. Inform. 109(2011), 425-462] (see also 5.11), given a Dynkin diagram Δ, with n vertices and the Euler quadratic form qΔ : Zn → Z, we study the set MorΔ ⊆ Mn(Z) of all morsifications of qΔ [37], i.e., the non-singular matrices A ∈ Mn(Z) such that its Coxeter matrix CoxA := −A · A−tr lies in Gl(n, Z) and qΔ(v) = v · A · vtr, for all v ∈ Zn. The matrixWeyl groupWΔ (2.13) acts on MorΔ and the determinant detA ∈ Z, the order cA ≥ 2 of CoxA (i.e. the Coxeter number), and the Coxeter polynomial coxA(t) := det(t ·E−CoxA) ∈ Z[t] are WΔ-invariant. Moreover, the finite set RqΔ = {v ∈ Zn; qΔ(v) = 1} of roots of qΔ is CoxA- invariant. The following problems are studied in the paper: (a) determine the WΔ-orbits Orb(A) of MorΔ and the set CPolΔ = {coxA(t); A ∈ MorΔ}, (b) construct a finite minimal CoxA-mesh quiver in Zn containing all CoxA-orbits of the finite set RqΔ of roots of qΔ. We prove that CPolΔ is a finite set and we construct algorithms allowing us to solve the problems for the morsifications A = [aij ] ∈ MorΔ, with |aij | ≤ 2. In this case, by computer algebra technique and computer computations, we prove that, for n ≤ 8, the number of the WΔ-orbits Orb(A) is at most 6, sΔ := |CPolΔ| ≤ 9 and, given A,A′ ∈ MorΔ and n ≤ 7, the following three conditions are equivalent: (i) A′ = Btr · A · B, for some B ∈ Gl(n, Z), (ii) coxA(t) = coxA′ (t), and (iii) cA · detA = cA′ · detA′. We also show that sΔ equals 6, 5, and 9, if Δ is the diagram E6, E7, and E8, respectively.
Wydawca
Czasopismo
Rocznik
Tom
Strony
447--490
Opis fizyczny
Bibliogr. 43 poz., tab.
Twórcy
autor
- Faculty of Mathematics and Computer Science Nicolaus Copernicus University ul. Chopina 12/18, 87-100 Toru´n, Poland
Bibliografia
- [1] I. Assem, D. Simson and A. Skowro´nski, Elements of the Representation Theory of Associative Algebras, Volume 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006.
- [2] M. Barot and J.A. de la Pe˜na, The Dynkin type of a non-negative unit form, Expo. Math. 17(1999), 339–348.
- [3] R. Bautista and D. Simson, Torsionless modules over 1-Gorenstein ℓ-hereditary artinian rings, Comm. Algebra 12 (1984), 899–936.
- [4] I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel’s theorem, Uspiehi Mat. Nauk, 28(1973), 19–33. (in Russian); English translation in Russian Math. Surveys, 28(1973), 17–32.
- [5] V. M. Bondarenko and M. V. Stepochkina, On posets of width two with positive Tits form, Algebra and Discrete Math. 2(2005), 20–35.
- [6] V. M. Bondarenko and M. V. Stepochkina, (Min, max)-equivalence of partially ordered sets and quadratic Tits form (in Russian, English Summary), Zb. Pr. Inst. Mat. NAN Ukr. 2, No. 3, 2005, 18–58 (Zbl. 1174.16310).
- [7] V. M. Bondarenko and M. V. Stepochkina, (Min, max)-equivalency of posets and nonnegative of the quadratic Tits forms, Ukrain. Mat. Zh. 60(2008), pp. 1157–1167.
- [8] V. M. Bondarenko and M. V. Stepochkina, Description of posets with respect to the nonnegativity Tits forms, Ukrain. Mat. Zh. 61(2009), pp. 734–746.
- [9] P. Dowbor and D. Simson, Quasi-Artin species and rings of finite representation type, J. Algebra 63 (1980), 435–443.
- [10] J. A. Drozd, Coxeter transformations and representations of partially ordered sets, Funct. Anal. Appl. 8(1974), 219–225.
- [11] Ju. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer-Verlag, Berlin, 1994.
- [12] M. Felisiak, Computer algebra technique for Coxeter spectral study of edge-bipartite graphs and matrix morsifications of Dynkin type An, Fund. Inform. 126(2013), to appear.
- [13] M. Felisiak and D. Simson, Experiences in computing mesh root systems for Dynkin diagrams using Maple and C++, Proc. 13th Intern. Symposium on Symbolic and Numeric Algorithms, SYNASC11, Timisoara, 2011, IEEE Post-Conference Proceedings, IEEE Computer Society, IEEE CPS, pp. 83-86, Washington-Tokyo, 2011.
- [14] M. Felisiak and D. Simson, On combinatorial algorithms computing mesh root systems and matrix morsifications for the Dynkin diagram An, Discrete Math. 313(2013), in press, doi: 10.1016/j.disc.2013.02.003.
- [15] M. Gąsiorek, and D. Simson, Programming in PYTHON and an algorithmic description of positive wandering on one-peak posets, Electronic Notes in Discrete Mathematics 38(2011), 419-424, doi:10.1016/j.endm.2011.09.068.
- [16] M. Gąsiorek and D. Simson, One-peak posets with positive Tits quadratic form, their mesh translation quivers of roots, and programming in Maple and Python, Linear Algebra Appl. 436(2012), 2240–2272, doi:10.1016/j.laa. 2011.10.045.
- [17] M. Gąsiorek and D. Simson, A computation of positive one-peak posets that are Tits-sincere, Colloq. Math. 127(2012), 83–103, DOI: 10.4064//cm127-1-6.
- [18] D. Happel, Tilting sets on cylinders, Proc. London Math. Soc. 51(1985), 21–55.
- [19] H. J. von Höhne, On weakly positive unit forms, Comment Math. Helvetici 63(1988), 312–336.
- [20] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge Univ. Press, 1990.
- [21] J. Kosakowska, Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fund. Inform. 119(2012), 149-162, doi:10.3233/FI-2012-731.
- [22] J. Kosakowska and D. Simson, Hereditary coalgebras and representations of species, J. Algebra, 293(2005), 457–505.
- [23] D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 2: Generating All Tuples and Permutations, Addison-Wesley Professional, 2005.
- [24] S. Ladkani, On the periodicity of Coxeter transformations and the non-negativity of their Euler forms, Linear Algebra Appl. 428(2008), 742–753.
- [25] H. Lenzing and J.A de la Pe˜na, Spectral analysis of finite dimensional algebras and singularities, In: Trends in Representation Theory of Algebras and Related Topics, ICRA XII, (ed. A. Skowro´nski), Series of Congress Reports, European Math. Soc. Publishing House, Z¨urich, 2008, pp. 541–588.
- [26] G. Marczak, A. Polak and D. Simson, P-critical integral quadratic forms and positive forms. An algorithmic approach, Linear Algebra Appl. 433(2010), 1873–1888, doi: 10.1016//j.laa. 2010.06.052.
- [27] A. Polak and D. Simson, Symbolic and numerical computation in determining P-critical unit forms and Tits P-critical posets, Electronic Notes in Discrete Mathematics 38(2011), 723-730, doi:10.1016/j.endm.2011.10.021.
- [28] A. Polak and D. Simson, One-peak posets with almost P-critical Tits form and a spectral Coxeter classification using computer algebra tools, European J. Combin. 2013, to appear.
- [29] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., Vol. 1099, Springer–Verlag, Berlin–Heidelberg–New York-Tokyo, 1984.
- [30] M. Sato, Periodic Coxeter matrices and their associated quadratic forms, Linear Algebra Appl. 406(2005), 99–108; doi: 10.1016//j.laa. 2005.03.036.
- [31] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications, Vol. 4, Gordon & Breach Science Publishers, 1992.
- [32] D. Simson, A reduction functor, tameness and Tits form for a class of orders, J. Algebra 174(1995), 430–452.
- [33] D. Simson, Chain categories and subprojective representations over uniserial algebras, Rocky Mountain J. Math. 32(2002), 1627-1650.
- [34] D. Simson, On Corner type Endo-Wild algebras, J. Pure Appl. Algebra 202(2005), 118–132.
- [35] D. Simson, Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories, Colloq. Math. 115(2009), 259–295.
- [36] D. Simson, Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets, Linear Algebra Appl. 433(2010), 699–717; doi: 10.1016/j.laa. 2010.03.04.
- [37] D. Simson, Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebra, 215(2011), 13–34, doi: 10.1016/j.jpaa. 2010.02.029.
- [38] D. Simson, Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots, Fund. Inform. 109(2011), 425–462, doi: 10.3233/FI-2011-603.
- [39] D. Simson, A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits, Fund. Inform. 125(2013), in press.
- [40] D. Simson, Toroidal algorithms for mesh geometries of root orbits of the Dynkin diagram D4, Fund. Inform. 125(2013), in press.
- [41] D. Simson, A Coxeter-Gram classification of positive simply-laced edge-bipartite graphs, SIAM J. Discrete Math. 27( 2013), in press.
- [42] D. Simson and A. Skowro´nski, Elements of the Representation Theory of Associative Algebras, Volume 2. Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, Cambridge-New York, 2007.
- [43] D. Simson and M.Wojew´odzki, An algorithmic solution of a Birkhoff type problem, Fund. Inform. 83(2008), 389–410.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8bdc022-0849-4d2c-a181-a301afb89f7e