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1. Introduction

In order to obtain maintenance system reliability and availability, 
preventive replacements according to the age of elements and subsys-
tems are introduced into the maintenance system. Age-replacements 
have been known for a long time, e.g. [2]. This problem was examined 
through development of preventive age-replacement for various indi-
vidual cases. In particular, in the papers [3, 4, 10, 12] whole range of 
important analytical results was obtained. However, the methods of 
age-replacement for technical objects with valid manufacturer’s war-
ranty were developed much later. Currently, manufacturer’s warranty 
is a basic element of modern market. The basic role of a warranty is 
an offer including a list of actions the customer must undertake when 
the product is damaged during warranty period. Manufacturer’s war-
ranty for the product creates an incentive for the customer to make 
various commitments, improving the reputation of the manufacturer, 
and influencing the market share as well as potential profit. A de-
tailed discussion and overview of the results connected to various ap-
proaches to product warranty is included in the following papers [5, 6, 
7]. In particular, the warranty policy for non-repairable products was 
discussed in the paper [5]. The warranty policy analyzed in this paper 
is carried out through the strategy of damaged element replacement 
within the period of warranty by a new element with full warranty. 
The mathematical model and cost analysis for such strategy were de-
veloped in the papers [1, 8, 13]. In the paper [14] the criteria function 
defining the costs connected to carrying out preventive replacements 
of non-repairable elements with a warranty when time before failure 

has distribution with increasing failure rate function. In the quoted 
paper the criteria function depends on the distribution of time before 
failure, repair and preventive replacement costs as well as the length 
of warranty period. It is assumed that the times of repair and pre-
ventive replacement are negligible. In this paper the criteria function 
discussed is more general than in the paper [14], taking into consid-
eration non-zero times of repair and times of preventive replacements. 
The set-up of the criteria function g(x) was based on the limit values 
of semi–Markov processes. The aim of this work is to formulate the 
conditions for existence of minimum function g(x) defining losses in 
maintenance system. 

2. Basic symbols and definitions 

In this paper the following symbols are used: 
S1 – state of proper work,
S2 – state of repair (replacement) during warranty period,
S3 – state of preventive replacement during warranty period,
S4 – state of repair (replacement) after warranty period,
z2 – cost of repair (replacement) per time unit during warranty pe-

riod,
z3 – cost of preventive replacement per time unit,
z4 – cost of repair (replacement) per time unit after warranty period,
w – length of warranty period,
T1 – lifetime of technical object (time before failure),
T2 – length of repair (replacement) time during warranty period,
T3 – length of preventive replacement time after warranty period,
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T4  – length of repair (replacement) time after warranty period, 
ETi – mean value for random variable Ti, i = 1, 2, 3, 4,
x – (preventive) replacement age of technical object (element), 
f(t) – density of probability for lifetime random variable T1,
F(t) – distribution function for random variable T1, F(t) = P{T1 < t},
R(t) – reliability function for random variable T1, R(t) = 1 – F(t),
λ(t) – failure rate function for time T1, λ(t) = f(t) / R(t),
g(x) – criteria function defining loss per time unit depending on re-

placement time x.

In the paper [14] it was shown that if at moment x preventive re-
placement is carried out, the cost per time unit is given in formula:
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where: cd stands for cost of replacement of damaged element, cp 
stands for cost of purchase of the element with ET(x) the integral in 
the form of:

 ( )
0
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x

ET x R s ds= ∫ . (2)

Function g(x) determined by formula (1) is continuous for x ≥ 0 
and differentiable for x ≠ w. In the paper [14] final sufficient con-
ditions were given for which function g(x) has a minimum. In the 
age-replacement model presented in the paper, neither the times of 
replacements nor times of preventive replacements are given. The 
semi-Markov model built in the paper takes into consideration times 
of replacements as well as exchanges and is based on the limit theo-
rem for semi-Markov processes with finite number of states [9]. One 
of the assumptions of this theorem is the requirement for mean values 
ETi, i = 1, 2, 3, 4 of times Ti, i = 1, 2, 3, 4 remaining at states to be 
positive. In the semi-Markov model the criteria function g(x) belongs 
to the distribution of probability of random variable depends on T1, 
mean values ETi, i = 1, 2, 3, 4, unit costs zi, i = 1, 2, 3, 4 as well as 
limit probabilities p*

i(x), i = 1, 2, 3, 4 of Markov chain embedded in 
semi-Markov process X(t). It is known that [9, 11] criteria function 
g(x) expressing repair and replacement costs has the following form:
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where zi is the unit cost of technical object remaining at state Si, and 
pi

*(x) is the limit probability of Markov chain embedded in semi-
Markov process assuming that at moment x preventive replacement 
takes place. The following deliberations assume z1 = 0.

3. Mathematical model of the problem 

The paper presents the possibility of an approach to building crite-
ria function g(x)   different than in other known papers. This approach 
is based on the limit property of semi-Markov processes for building 
criteria function. In order to build such a model, four states of S1, S2, 
S3 and S4  of semi-Markov process X(t) have been delineated.

On the basis of defining conditions for the states S1, S2, S3, S4 the 
matrix P of probabilities of embedded Markov chain may be written 
as follows 
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where x is the age of replacement. Conditional probabilities jest p1i(x), 
i = 2, 3, 4 are defined separately for cases x < w and x ≥ w. The first 
case to be examined is when x < w. If replacement time x < T1, the 
repair took place during warranty period (stage S2), thus:

 p12(x) = F(x).

If x ≥ T1, then during warranty period the preventive replacement is 
carried out (state S3), thus: 

 p13(x) = R(x).

In the case when x < w, then, for post-warranty repair (state S4) it is: 

 p14(x) = 0. 

For x ≥ w repair is carried out when < T1, thus:

 p12(x) = F(w).

If T1 ≥ x, preventive replacement is carried out, thus:

 p13(x) = R(x). 

Repair after warranty period is carried out if w ≤ T1 < x, thus:

 p14(x) = F(x) – F(w).

It is easy to confirm that in both cases discussed here for matrix (4) 
the following: 

 p12(x) + p13(x) + p14(x) = 1.

It is known that [9] limit probabilities pi
*(x), i = 1, 2, 3, 4 in formula 

(3) are obtained as solution of linear equation system in the form of:

 * *( ) ( )i ij j
i

p x p p x=∑ , where j = 1, 2, 3, 4.

The above system of equations is a dependent system, which is why 
one of the equations is replaced by normalization condition in the 
form of:

 *( ) 1i
i

p x =∑ . 

For x < w a system of equations is solved in the form of:

 F(x) p1
*(x) = p2

*(x),

 R(x) p1
*(x) = p3

*(x), 
(5)

 p4
*(x) = 0,

 p1
*(x) + p2

*(x) + p3
*(x) + p4

*(x) = 1.

Solution of linear equation system (5) for x < w is as follows:
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 p*
1(x) = ½,

 p*
2(x) = ½ F(x),    

  (6)
 p*

3(x) = ½ R(x),

 p*
4(x) = 0.

Whereas for x  ≥ w the system of equations has the following form:

 F(w) p1
*(x) = p2

*(x),

 R(x) p1
*(x) = p3

*(x),
(7)

 [ F(x) – F(w) ] p1
*(x) = p4

*(x),

 p1
*(x) + p2

*(x) + p3
*(x) + p4

*(x) = 1.

Solution of linear equation system (7) for x ≥ w is as follows: 

 p*
1(x) = ½,

 p*
2(x) = ½ F(w),

(8)
 p*

3(x) = ½ R(x),

 p*
4(x) = ½ (F(x) – F(w)).

Taking into consideration that in the analyzed model of age-re-
placement it is assumed that z1 = 0, hence criteria function (3) for  
x < w has the following form:
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where ET(x) is the function determined by formula jest (2).

On the basis of (6) and (9), criteria function g1(x) for x ≤ w may 
now be presented in the following form:

 ( ) 1 1
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where coefficients B1, B, C1 and C are expressed as follows:

 B1 = ET2 z2 – ET3 z3,

 B = ET2 – ET3,
(11)

 C1 = ET3 z3,

 C = ET3.

On the basis of (8) and (9), criteria function g(x) for x > w may now 
be presented in the following form:
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where:

 D1 = ET4 z4 – ET3 z3, 

 D = ET4 – ET3,
  (13)
 E1 = F(w) [ET4 z4 – ET2 z2] + ET3 z3,

 E = F(w) [ET4 – ET2]  + ET3. 

The main problem analyzed in the paper is formulating the condi-
tions for existence of the minimum function g(x) on condition x ≥ 0, 
determined as follows:

 g(x) = 1

2

( ), ,
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On the basis of formulas (10), (11), (12) and (13) it is concluded that 
criteria function g(x) depends on distribution of random variable T1, 
of the length of warranty period w, unit costs z2, z3 and z4, mean times 
ET2, ET3 and ET4 of remaining at states S2, S3 and S4 of the process.

4. Criteria function properties

Derivative of criteria functions (10) equals: 
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where:
 M1(x) = ET(x) + BF(x) + C as well as H(x) = ET(x) λ(x) – F(x).

Denominator M1(x) of first derivative of criteria function (10) is 
increasing function from M1(0) = C > 0 to M1(∞) = ET1 + B + C. 
Hence M1(x) > 0. Sign of derivative criteria function is the same as the 
sign of function h1(x), which may be written in the following form:

 h1(x) = α1 H(x) + β1 + λ(x) γ1,

where the following notations are assumed:

α1 = B1,

β1 = – C1,

γ1 =  B1C – BC1.

Coefficients α1, β1 i γ1 are expressed by formulas: 

α1 = ET2 z2 – ET3 z3,

 β1 = – ET3 z3, (15)

γ1 =  ET2 ET3(z2 – z3).

By analogy, derivative of criteria (12) has the following form:
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where M2(x) = ET(x) + DF(x) + E.
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Denominator M2(x) of derivative of criteria function (12) is deter-
mined by the formula:

 M2(x) = ET(x) + F(x) (ET4 – ET3) +F(w) (ET4 – ET2) + ET3,

 M2(x) = ET(x) + F(x) ET4 +F(w) (ET4 – ET2).

If ET4 ≥ ET2, then the inequality M2(x) > 0 is true. Sign of derivative 
(16) of criteria function is the same as sign of function h2(x), which 
may be written as follows:

h2(x) = α2 H(x) + β2 + λ(x) γ2,

where coefficients α2, β2 and γ2 are expressed by formulas:

α2 = D1= ET4 z4 – ET3 z3,

β2 = – E1 = F(w) [ ET4 z4 – ET2 z2] – ET3 z3,

γ2 = D1E – DE1.

After transformations, coefficient γ2 may be written as:

γ2 = F(w) [ET2 ET4 (z4 – z2) + ET2 ET3 (z2 – z3) + ET3 ET4(z3 – z4)] 
+ ET3 ET4(z4 – z3).

Lemma 1. If ET4 > ET3 and z4 ≥ z3, then inequality γ2 > 0 is true.

Proof. By grouping two final terms of the above total may be written 
as follows:

γ2 = F(w) [ET2 ET4 (z4 – z2) + ET2 ET3 (z2 – z3)] + R(w) ET3 ET4(z4 – z3).

Provided that ET4 > ET3 , we arrive at inequality:

γ2 > F(w) ET2 ET3[ (z4 – z2 + z2 – z3] + R(w) ET3 ET4(z4 – z3).

Since z4 ≥ z3 , we get:

γ2 > (z4 – z3) ET3 [F(w)ET2+ R(w) ET4],

which concludes the proof for lemma 1.

While formulating criteria of the existence of minimum function g(x), 
it is comfortable to examine function h(x) determined as follows:

h(x) = h1(x) for x ∈ < 0, w> as well as h(x) = h2(x) for x∈ (w, ∞),
 
where hi(x) = αi H(x) + βi + γi λ(x), and = 1, 2.

A very important characteristic of function h(x) is determined by 
lemma 2.

Lemma 2. If unit cost of post-warranty repairs exceed unit costs of 
repairs during warranty period and post-warranty preventive replace-
ment as well as for mean values, there is ET4 ≥ ET2, then h(w+) –h(w) 
≥ 0, where h(w+) is the right limit of function h(x) at point x = w.

Proof. We know that:

 α2 – α1 = ET4 z4 – ET2 z2 ≥ 0, (17)

 β2 –  β1 = F(w) [ET4 z4– ET2 z2] ≥ 0. (18)

Then result of subtraction:

 γ2 – γ1= F(w) [ET2 ET4 (z4 – z2) + ET2 ET3 (z2 – z3) +   
 ET3 ET4(z3 – z4)] + ET3 ET4(z4 – z3) – ET2 ET3(z2 – z3),

after grouping of final terms may be written in the following form: 

γ2 – γ1= F(w) ET2 ET4 (z4 – z2) – R(w) ET2 ET3 (z2 – z3) + 
R(w) ET3 ET4(z4 – z3),

γ2 – γ1= F(w) ET2 ET4 (z4 – z2) + R(w) ET3 [ ET4(z4 – z3) – 
ET2 (z2 – z3)].

Provided that ET4 ≥ ET2 and z4 ≥ z3 for subtraction γ2 – γ1 may be 
written as follows:

γ2 – γ1 ≥ F(w) ET2 ET4 (z4 – z2) + R(w) ET3 ET2(z4 – z2),

thus γ2 – γ1 ≥ 0.

The final inequality as well as inequalities (17) and (18) prove the 
validity of the thesis of lemma 2.

5. Conditions for the existence of minimum criteria 
function 

Examination of criteria function g(x) is considered with the fol-
lowing assumptions: 

Z1. β1 + γ1 f(0+) < 0,
Z2. Failure rate function λ(t) of random variable T1 is non-decreasing 

(T1∈  IFR),
Z3. ET4 > ET2,
Z4. ET4 > ET3,
Z5. z4 ≥ z2,
Z6. z4 ≥ z3.

The first assumption is usually implemented while considering 
preventive replacements [9]. It is easy to observe that for numerous 
known probability distributions f(0+) = 0 is valid. For example, for 
Weibull distribution and gamma distribution with increasing failure 
rate function this condition is valid. Therefore, if f(0+) = 0, then in this 
paper the inequality β1 =–ET3 z3 < 0 is always true. A very important 
assumption is the one claiming the failure rate function λ(t) is non-
decreasing (T1 ∈  IFR).

5.1. Examining criteria function in <0, w> interval

In examining function g(x) in <0, w> interval, Z1 and Z2 assump-
tions are implemented. Following is the examination of four cases for 
coefficients α1, γ1.

Case 1. α1 > 0,  γ1 > 0
Function h1(x) increases in <0, w> interval from value h1(0) = β1 + γ1 
f(0+) < 0 to value h1(w). Two cases are possible:
(A): h1(w) > 0,
(B): h1(w) ≤ 0.

Case 2. α1 < 0, γ1 < 0
Function h1(x) decreases in <0, w> interval from value β1 + γ1 f(0+) < 
0 to value h1(w). Possible case (B).

Case 3. α1 > 0, γ1 < 0
Derivative of function h1(x) is expressed by the formula:

h1’(x) = λ’(x) [α1 ET(x) + γ1].
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Let u(x) = α1 ET(x) + γ1, then u(x) increases from u(0) = γ1 < 0 to 
u(w). Two cases are possible: 
(a): u(w) ≤ 0, then u(x) ≤ 0 for  x∈ <0, w>, hence h1(x) is decreasing 
and case (B) occurs,
(b): u(w) > 0, in this case function u(x) changes the sign from „–” to 
„+”. Function u(x), therefore, reaches minimum. Only cases (A) and 
(B) are possible.

Case 4. α1 < 0, γ1 > 0
Function u(x) is decreasing from u(0) = γ1 > 0 to u(w). Depending on 
the sign of u(w), two cases are defined: 
(c): u(w) ≥ 0, then function h1(x) is increasing for x∈ <0, w>, there-
fore cases (A) and (B) are possible,
(d): u(w) < 0, in this case, u(x) changes the sign from „+” to „–”, 
hence function h1(x) at a point x0 reaches maximum. Formally, three 
of the following cases are possible: 
(i):   h1(x0) ≤ 0, then h1(w) < 0, case (B),
(ii):  h1(x0) > 0 and h1(w) ≤ 0,
(iii): h1(x0) > 0 and h1(w) > 0.

Cases (ii) and (iii) are discussed in the conclusion below. 

Lemma 3. If α1 < 0, γ1 > 0 and function h1(x) reaches maximum in 
point x0, then h1(x0) ≤ 0.

Proof. Necessary and sufficient condition for existence of maxi-
mum function h1(x) in <0, w> interval is the change of sign of de-
rivative h1’(x) at certain point x0, i.e. function u(x) from „+” to „−”. 
For function u(x) we may write u(x0) = α1 ET(x0) + γ1 = 0, hence 
ET(x0) = − γ1 / α1. The final equation is introduced to the formula for 
function h1(x). Hence h1(x0) = − α1 F(x0) + β1. If h1(x0) > 0, then 
F(x0) > β1 / α1. Entering formulas (15) on the right side of the final 
inequality, we may write it in the following form:

 F(x0) > 1 / (1 – ET2 z2 / ET3 z3). (19)

The fact that α1 < 0 results in inequality 0 < (ET2 z2) / (ET3 z3) < 1 being 
valid, hence finally, on the basis of (19) it is concluded that F(x0) > 1. 
Final inequality goes against the basic characteristic of the distribu-
tion function of random variable. Therefore, assumption h1(x0) > 0 is 
not true in this proof, which concludes the proof for lemma 3.

The thesis in lemma 3 implies that, for the introduced assumptions  
cases (ii) and (iii) fail to appear in deliberations of the paper.

5.2. Examining criteria function in (w, ∞) interval

This section implements the following assumptions: Z2, Z3, Z4, 
Z5 and Z6. Implementing these assumptions allows for making use of 
the inequality α2  > 0 and γ2 > 0. Paper (17) and lemma 1 suggest that 
function h2(x) is increasing for x ∈ (w, ∞). The cases considered are 
the following: 
(C): h2(w) ≥ 0, then from the fact that function h2(x) is increasing 
implies that for each x ∈  (w, ∞) function g(x) is increasing,
(D): h2(w) < 0 and h2(x) is increasing to do h2(∞) ≤ 0, then h2(x) ≤ 0 
for each x ∈  (w, ∞). Function g(x) is decreasing in (w, ∞) interval,
(E): h2(w) < 0 and h2(∞) > 0. Function h2(x) is increasing and there 
is one change of sign from „–” to „+”. Criteria function g(x) has its 
minimum at certain point x0 ∈  (w, ∞).

5.3. Analysis of function for x > 0

For x ∈  (0, w ) w two cases (A) and (B) were selected, while for x 
∈  (w, ∞) three cases, (C), (D) and (E). Formally, in order to examine 
the course of criteria function g(x) for x ≥ 0,  6 pairs of cases should 

be examined. However, a more detailed analysis of the characteristics 
of g(x) allows us to eliminate some pairs of cases. 
Case (A, C): (A): h1(x) > 0, (C): h2(w) ≥ 0 
On the basis of lemma 2 it was determined that in case (A, C) it is 
enough to consider (A): h1(x) > 0, (C): h2(w) > 0. Therefore, one may 
arrive at a conclusion:

Conclusion 1. For case (A, C) criteria function g(x) reaches precisely 
one minimum at point x0 ∈  (0, w).

On the basis of lemma 2 it is concluded that pairs of cases (A, D) and 
(A, E) may not occur. 
For pair (B, C): (B): h1(w) ≤ 0, (C): h2(w) ≥ 0 the following set is 
considered:

 K = { w : h1(w) = 0,  h2(w) = 0 }.

The conclusion is evident: 

Conclusion 2. If for case (B, C) set K ≠ Ø, then for any x0 ∈K func-
tion g(x) reaches minimum.

Implementing additional assumption into failure rate function leads to 
the following conclusion: 

Conclusion 3. If failure rate function λ(x) is increasing, then functions 
h1(x) and h2(x) are increasing and for (B, C) criteria function g(x) 
reaches exactly one minimum at point x0 = w.      

For the pair (B, D) it is (B): h1(x) ≤ 0, (D): h2(w) ≤ 0, h2(∞) ≤ 0. 
The fact that function h2(x) is non-decreasing as well as lemma 2 im-
ply that it is enough to analyze the case when h1(x) < 0, h2(w) < 0 i 
h2(∞) ≤ 0. Then the following conclusion is true: 

Conclusion 4. For case (B, D) criteria function g(x) is decreasing. 

For pair (B, E) it is (B): h1(w) ≤ 0, (E): h2(w) ≤ 0, h2(∞) > 0. Ex-
ceptional case when h1(w) ≤ 0,  h2(w) = 0 was considered for case 
(B, C).

Conclusion 5. If h1(w) < 0, h2(w) < 0 and h2(∞) > 0, then point x0 ∈  
(w, ∞) exists at which function g(x) reaches minimum.   

Conclusions 1, 2, 3, 4 and 5 include sufficient conditions for existence 
of minimum cost function g(x).

Numerical  example

Example 1. In this example the optimization of criteria function is 
carried out for two distributions of random variables T1. In the first 
one it is assumed the random variable T1 has Weibull distribution with 
probability density function in the form:

 f(t) = a b tb–1 exp(– a tb),

for t ≥ 0, a > 0, b > 0.
Time before failure T1 ∈  IFR, if b ≥ 1. The second distribution con-
sidered in this example is gamma distribution with density function 
in the form:

 ( )
( )

11 xf x x eα β
αβ α

− −=
Γ

,

for x ≥ 0, α > 0, β > 0, symbol Γ(α) denotes gamma function defined 
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Graphs of the functions of costs shown in the above figure are 
delineated for the same parameter values, they only differ in the type 
of probability distribution of random variable T meaning time until 
failure. An analysis of graphs shows that both criteria functions reach 
minimum values for approximate time moments. However, there are 
certain differences in optimal values for criteria function. The mini-
mum value of criteria function for gamma distribution is lower than 
for Weibull distribution. It shows that the identification of the type of 
probability distribution for time until failure is important in mainte-
nance tasks. 

6. Conclusions

In the paper a criteria function was created to describe the cost 
of operation of maintenance system in the case of implementing age 
replacements according to the age of the elements (technical objects) 
with valid manufacturer’s warranty as well as being non-repairable. 
Criteria for the existence of minimum cost for such replacements. It 
was demonstrated that, taking general assumptions into consideration, 
criteria function has one such minimum. Numeric example was shown, 
in which, for two distributions of time until failure the cost function 
reaches minimum value. It demonstrates that in practice there may 
be situations in which cutting of costs for preserving of maintenance 
systems is possible as a result of carrying out replacements of objects 
before expiration of warranty period. 

by the formula:

 1

0
( ) xx e dxαα

∞
− −Γ = ∫ .

If α ≥ 1, then time until failure T1 ∈  IFR. In calculations the following 
parameter values were chosen:  
ET2 = 0.10, z2 = 1.2,
ET3 = 0.01, z3 = 0.7,
ET4 = 0.15, z4 = 1.5.
In the example the warranty period considered is w = 1. For calcula-
tions, the following values of Weibull distribution parameters were 
chosen: a = 0.4, b = 2. The values of gamma distribution parameters 
were set at α = 3.63 and β = 0.38. Values of parameters α and β of 
gamma distribution were selected so that for both considered times 
until failure the mean value of gamma distribution ET1 = βα = 1.4 and 
distribution function value F(w) = 0.33. Graphs of function g(x) for 
both distributions are shown in figure 1.

Fig. 1. Graphs of the cost of preventive replacement for gamma and Weibull 
distributions
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