PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Parametric multi-response optimisation of various organic Rankine cycle configurations for geothermal heat source application using Taguchi grey relational analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, statistical methods (Taguchi, analysis of variance (ANOVA), and grey relational analysis (GRA)) are used to evaluate the impact, contribution ratios, and order of importance of parameters on the energy and exergy efficiencies of the simple organic Rankine cycle (SORC) and dual pressure organic Rankine cycle (DORC). The parameters being investigated are the working fluid (A), pinch point temperature difference of the evaporator (B) and condenser (C), degree of superheating (D), evaporator temperature (E), condenser temperature (F), turbine isentropic efficiency (G), pump isentropic efficiency (H), and low-pressure evaporator temperature (J, for DPORC only). Whereas the Taguchi method determines the optimum parameter combination for maximum system performance, ANOVA weighs the influence of individual parameters on the performance of the target function, and GRA optimizes the multi-response characteristic function. The condenser and evaporator temperatures, pinch point temperature difference of the condenser and turbine isentropic efficiency are revealed as the major process parameters for multi-response performance characteristics of SORC, with an influence factor of 44.79%, 20.96%, 14.81% and 10.69%, respectively. While considering three different working fluids: HFE7000 (1), R245fa (2), and R141b (3), the combination A3B2C1D1E3F1G3H3 is determined as the optimum operating condition for multi-response performance characteristic of SORC with first- (energy) and second- (exergy) law efficiencies calculated as 18.64% and 51.69%, respectively. For DPORC, the turbine isentropic efficiency, condenser temperature, and pinch point temperature difference of the condenser and evaporator are the main process parameters for multi-response performance with 41.90%, 17.80%, 14.75%, and 10.47% impact factors, respectively. The best operating condition is obtained as A1B1C1D3E2F1G3H3J2 with first- and second-law efficiencies computed as 13.17% and 57.33%, respectively.
Rocznik
Strony
231--246
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • University of Cross River State, Calabar, Cross River State, Nigeria
autor
  • Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
  • University of Cross River State, Calabar, Cross River State, Nigeria
Bibliografia
  • [1] Igbong, D., Nyong, O., Enyia, J., Oluwadare, B., & Obhua, M. (2021). Exergoeconomic evaluation and optimization of Dual Pressure Organic Rankine Cycle (ORC) for geothermal heat source utilization. Journal of Power and Energy Engineering,9(9), 19–40. doi: 10.4236/jpee.2021.99002
  • [2] Braimakis, K., & Karellas, S. (2018). Energetic optimization of regenerative Organic Rankine Cycle (ORC ) configurations. Energy Conversion and Management, 159, 353–370. doi:10.1016/j.enconman.2017.12.093
  • [3] Li, J., Ge, Z., Liu, Q., Duan, Y., & Yang, Z. (2018). Thermoeconomic performance analyses and comparison of two turbine layouts for organic Rankine cycles with dual-pressure evaporation. Energy Conversion and Management, 164, 603–614. doi: 10.1016/j.enconman.2018.03.029
  • [4] Yamankaradeniz, N., Bademlioglu, A., & Kaynakli, O. (2018). Performance assessments of organic Rankine cycle with internal heat exchanger based on exergetic approach. Journal of Energy Resources Technology, 140, 102001–102008. doi: 10.1115/1.4040108
  • [5] Igbong, D., Nyong, O. E., Enyia, J., & Agba, A. (2021). Working fluid selection for simple and recuperative Organic Rankine Cycle operating under varying conditions : A comparative analysis. Advances in Science and Technology Research Journal,15(4), 202–221. doi: 10.12913/22998624/142013
  • [6] Sadeghi, M., Nemati, A., & Yari, M. (2016). Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle ) configurations using zeotropic mixtures. Energy, 109, 791–802. doi: 10.1016/j.energy.2016.05.022
  • [7] Liu, Q., Chen, R., Yang, X., & Xiao, X. (2023). Thermodynamic analyses of sub- and supercritical ORCs using R1234yf, R236ea and their mixtures as working fluids for geothermal power generation. Energies, 16(15), 5676. doi: 10.3390/en16155676
  • [8] Mokhtari, H., Hadiannasab, H., Mostafavi, M., Ahmadibeni, A., & Shahriari, B. (2016). Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger. Energy, 102, 260–275. doi: 10.1016/j.energy.2016.02.067
  • [9] Sun, J., Liu, Q., & Duan, Y. (2018). Effects of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems. Geothermics, 75, 249–258. doi: 10.1016/j.geothermics.2018.06.001
  • [10] Zare, V. (2016). A comparative thermodynamic analysis of two tri-generation systems utilizing low-grade geothermal energy. Energy Conversion and Management, 118, 264–274. doi:10.1016/j.enconman.2016.04.011
  • [11] Mansoury, M., Jafarmadar, S., & Khalilarya, S. (2018). Energetic and exergetic assessment of a two-stage organic Rankine cycle with reactivity controlled compression ignition engine as a low temperature heat source. Energy Conversion and Management,166, 215–232. doi: 10.1016/j.enconman.2018.04.019
  • [12] Quoilin, S., Declaye, S., Tchanche, B. F., & Lemort, V. (2011). Thermo-economic optimization of waste heat recovery organic Rankine cycles. Applied Thermal Engineering, 31, 2885–2893. doi: 10.1016/j.applthermaleng.2011.05.014
  • [13] Roy, J. P., Mishra, M. K., & Misra, A. (2010). Parametric optimization and performance analysis of a waste heat recovery system using organic Rankine cycle. Energy, 35, 5049–5062. doi:10.1016/j.energy.2010.08.013
  • [14] Scardigno, D., Fanelli, E., Viggiano, A., Bracco, G., & Magi, V. (2015). A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources. Energy, 91, 807–815. doi: 10.1016/j.energy.2015.08.066
  • [15] Moloney, F., Almatrafi, E., & Goswami, D. Y. (2017). Working fluid parametric analysis for regenerative supercritical organic Rankine cycles for medium geothermal reservoir temperatures. Energy Procedia, 129, 599–606. doi: 10.1016/j.egypro.2017.09.216
  • [16] Li, G. (2016). Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part I: Energy and exergy performance evaluation. Renewable and Sustainable Energy Reviews, 53, 477–499. doi: 10.1016/ j.rser.2015.08.066
  • [17] Roy, J. P., & Misra, A. (2012). Parametric optimization and performance analysis of a regenerative Organic Rankine cycle using R123 for waste heat recovery. Energy, 39, 227–235. doi:10.1016/j.energy.2012.01.026
  • [18] Wang, H., Li, H., Wang, L., & Bu, X. (2017). Thermodynamic analysis of organic Rankine cycle with hydrofluoroethers as working fluids. Energy Procedia, 105, 1889–1894. doi:10.1016/j.egypro.2017.03.554
  • [19] Bademlioglu, A. H., Canbolat, A. S., Yamankaradeniz, N., & Kaynakli, O. (2018). Investigation of parameters affecting Organic Rankine Cycle efficiency by using Taguchi and ANOVA methods. Applied Thermal Engineering, 145, 221–228. doi:10.1016/j.applthermaleng.2018.09.032
  • [20] Bademlioglu, A. H., Canbolat, A. S., & Kaynakli, O. (2020). Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis. Renewable and Sustainable Energy Reviews, 117, 109483. doi: 10.1016/j.rser.2019.109483
  • [21] Kumar, U., & Karimi, M. N. (2014). Application of Taguchi’s methods for optimizing organic Rankine cycle for recovering low grade industrial waste heat. International Journal of Thermal & Environmental Engineering, 8(2), 91–101. doi: 10.5383/ijtee.08.02.005
  • [22] Kotcioglu, I., Cansiz, A., & Khalaji, M. (2013). Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method. Applied Thermal Engineering, 50, 604–613. doi:10.1016/j.applthermaleng.2012.05.036
  • [23] Sahin, B. (2007). Taguchi approach for determination of optimum design parameters for a heat exchanger having circularcross sectional pin fins. Heat and Mass Transfer, 45, 493–502. doi: 10.1007/s00231-006-0224-5
  • [24] Turgut, E., Cakmak, G., & Yildiz, C. (2012). Optimization of the concentric heat exchanger with injector turbulator by Taguchi method. Energy Conversion and Management, 53, 268–275. doi:10.1016/j.enconman.2011.09.011
  • [25] Verma, V., & Murugesan, K. (2014). Optimization of solar assisted ground source heat pump system for space heating application by Taguchi method and utility concept. Energy and Buildings, 82, 296–309. doi: 10.1016/j.enbuild.2014.07.029
  • [26] Acir, A., Canli, M. E., Ata, I., & Cakiroglu, R. (2017). Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysis. Applied Thermal Engineering, 122, 330–338. doi: 10.1016/j.applthermaleng.2017.05.018
  • [27] Chamoli, S., Yu, P., & Kumar, A. (2016). Multi-response optimization of geometric and flow parameters in a heat exchanger tube with perforated disk inserts by Taguchi grey relational analysis. Applied Thermal Engineering, 103, 1339–1350. doi: 10.1016/j.applthermaleng.2016.04.166
  • [28] Mia, M., Rifat, A., Tanvir, F., Gupta, M. K., Hossain, J., & Goswami, A. (2018). Multi-objective optimization of chip-tool interaction parameters using Grey-Taguchi method in MQLassisted turning. Measurement, 129, 156–166. doi: 10.1016/j.measurement.2018.07.014
  • [29] Klein, S. A. (2020). Engineering Equation Solver (V10.801-3D).F-Chart Software.
  • [30] Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal Design & Optimization. John Wiley & Sons Inc.
  • [31] Igbong, D. (2022). Energy and Exergy-based Performance Analysis of a Combined Recompression Supercritical Carbon Dioxide-Organic Rankine Cycle for Waste Heat Recovery. Cleaner Energy Systems, 100022. doi: 10.1016/j.cles.2022.100022
  • [32] Delgado-Torres, A. M., & García-Rodríguez, L. (2010). Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC). Energy and Buildings, 51, 2846–2856. doi:10.1016/j.enconman.2010.06.022
  • [33] Yari, M. (2010). Exergetic analysis of various types of geothermal power plants. Renewable Energy, 35(1), 112–121.doi: 10.1016/j.renene.2009.07.023
  • [34] Wang, M., Chen, Y., Liu, Q., & Yuanyuan, Z. (2018). Thermodynamic and thermo-economic analysis of dual-pressure and single pressure evaporation organic Rankine cycles. Energy Conversion and Management, 177, 718–736. doi: 10.1016/j.enconman.2018.10.017
  • [35] Tutar, M., Aydin, H., Yuce, G., Yavuz, N., & Bayram, A. (2014). The optimisation of process parameters for friction stir spotwelded AA3003-H12 aluminium alloy using a Taguchi orthogonal array. Material Design, 63, 789–797. doi: 10.1016/j.matdes.2014.07.003
  • [36] Ross, P. J. (1996). Taguchi techniques for quality engineering (second). McGraw Hill.
  • [37] Yan, J., & Li, I. (2013). Multi-objective optimization of miling parameters - the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462–471. doi:10.1016/j.jclepro.2013.02.030
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8b7e63f-62a6-4a61-b0d9-5bd9754ca2aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.