PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active control of terahertz wave assisted by dielectric loaded plasmonic waveguide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose and numerically investigate a directional coupler which consists of two dielectric loaded InSb based terahertz (THz) plasmonic waveguides. Owing to the permittivitly tunable property of InSb, the coupling strength between the two dielectric loaded plasmonic waveguides is affected by temperature, so the maximum power coupled from the input waveguide to the cross-waveguide and the correspondingly coupling length could be effectively tailored by altering temperature. Under different temperatures, this directional coupler could act as a thermally controlled terahertz wave switch or a 3-dB terahertz splitter around the frequency of 1.17 THz. This ultracompact and thermally controlled plasmonic directional coupler may find potential important applications in the highly integrated photonic circuits for terahertz system and technologies.
Słowa kluczowe
Czasopismo
Rocznik
Strony
89--99
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • College of Electronic and Information Engineering, West Anhui University, Luan 237012, China
autor
  • College of Electronic and Information Engineering, West Anhui University, Luan 237012, China
autor
  • College of Electronic and Information Engineering, West Anhui University, Luan 237012, China
  • Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China
autor
  • College of Electronic and Information Engineering, West Anhui University, Luan 237012, China
autor
  • College of Electronic and Information Engineering, West Anhui University, Luan 237012, China
Bibliografia
  • [1] TONOUCHI M., Cutting-edge terahertz technology, Nature Photonics 1(2), 2007, pp. 97–105, DOI: 10.1038/nphoton.2007.3.
  • [2] FERGUSON B., ZHANG X.C., Materials for terahertz science and technology, Nature Materials 1(1), 2002, pp. 26–33, DOI: 10.1038/nmat708.
  • [3] FISCHER B.M., HOFFMANN M., HELM H., WILK R., RUTZ F., KLEINE-OSTMANN T., KOCH M., JEPSEN P.U., Terahertz time-domain spectroscopy and imaging of artificial RNA, Optics Express 13(14), 2005, pp. 5205–5215, DOI: 10.1364/OPEX.13.005205.
  • [4] AUTON G., BUT D.B., ZHANG J., HILL E., COQUILLAT D., CONSEJO C., NOUVEL P., KNAP W., VARANI L., TEPPE F., TORRES J., SONG A., Terahertz detection and imaging using graphene ballistic rectifiers, Nano Letters 17(11), 2017, pp. 7015–7020, DOI: 10.1021/acs.nanolett.7b03625.
  • [5] KALTENECKER K., ZHOU B., TYBUSSEK K.-H., ENGELBRECHT S., LEHMANN R., WALKER S., JEPSEN P.U., FISCHER B.M., Ultra-broadband THz spectroscopy for sensing and identification for security applications, [In] 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2018, DOI: 10.1109/IRMMW-THz.2018.8510500.
  • [6] DIEM M., KOSCHNY T., SOUKOULIS C.M., Wide-angle perfect absorber/thermal emitter in the terahertz regime, Physical Review B 79(3), 2009, article 033101, DOI: 10.1103/PhysRevB.79.033101.
  • [7] KLEINE-OSTMANN T., DAWSON P., PIERZ K., HEIN G., KOCH M., Room-temperature operation of an electrically driven terahertz modulator, Applied Physics Letters 84(18), 2004, p. 3555, DOI: 10.1063/1.1723689.
  • [8] KHAN M.J., CHEN J.C., KAUSHIK S., Optical detection of terahertz radiation by using nonlinear parametric upconversion, Optics Letters 32(22), 2007, pp. 3248–3250, DOI: 10.1364/OL.32.003248.
  • [9] WANG B.-X., WANG L.-L., WANG G.-Z., HUANG W.-Q., LI X.-F., ZHAI X., Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber, IEEE Photonics Technology Letters 26(2), 2014, pp. 111–114, DOI: 10.1109/LPT.2013.2289299.
  • [10] BARNES W.L., DEREUX A., EBBESEN T.W., Surface plasmon subwavelength optics, Nature 424, 2003, pp. 824–830, DOI: 10.1038/nature01937.
  • [11] WANG B.-X., WANG L.-L., WANG G.-Z., HUANG W.-Q., LI X.-F., ZHAI X., Frequency continuous tunable terahertz metamaterial absorber, Journal of Lightwave Technology 32(6), 2014, pp. 1183–1189, DOI: 10.1109/JLT.2014.2300094.
  • [12] GAN F., SUN C., LI H., GONG Q., CHEN J., On-chip polarization splitter based on a multimode plasmonic waveguide, Photonics Research 6(1), 2018, pp. 47–53, DOI: 10.1364/PRJ.6.000047.
  • [13] ZHENG K., SONG J., QU J., Hybrid low-permittivity slot-rib plasmonic waveguide based on monolayertwo dimensional transition metal dichalcogenide with ultra-high energy confinement, Optics Express 26(12), 2018, pp. 15819–15824, DOI: 10.1364/OE.26.015819.
  • [14] SUN F., HE S., Waveguide bends by optical surface transformations and optic-null media, Journal of the Optical Society of America B 35(4), 2018, pp. 944–949, DOI: 10.1364/JOSAB.35.000944.
  • [15] XU W., ZHU Z.H., LIU K., ZHANG J.F., YUAN X.D., LU Q.S., QIN S.Q., Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide, Optics Letters 40(7), 2015, pp. 1603–1606, DOI: 10.1364/OL.40.001603.
  • [16] QI Z., ZHU Z., XU W., ZHANG J., GUO C., LIU K., YUAN X., QIN S., Electrically tuneable directional coupling and switching based on multimode interference effect in dielectric loaded graphene plasmon waveguides, Journal of Optics 18(6), 2016, article 065003, DOI: 10.1088/2040-8978/18/6/065003.
  • [17] KANG M., CHONG Y.D., WANG H.-T., ZHU W., PREMARATNE M., Critical route for coherent perfect absorption in a Fano resonance plasmonic system, Applied Physics Letters 105(13), 2014, article 131103, DOI: 10.1063/1.4896972.
  • [18] HU B., WANG Q.J., ZHANG Y., Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons, Optics Letters 37(11), 2012, pp. 1895–1897, DOI: 10.1364/OL.37.001895.
  • [19] LI W., KUANG D., FAN F., CHANG S., LIN L., Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure, Applied Optics 51(29), 2012, pp. 7098–7102, DOI: 10.1364/AO.51.007098.
  • [20] LIU K., TORKI A., HE S., One-way surface magnetoplasmon cavity and its application for nonreciprocal devices, Optics Letters 41(4), 2016, pp. 800–803, DOI: 10.1364/OL.41.000800.
  • [21] HU B., WANG Q.J., ZHANG Y., Slowing down terahertz waves with tunable group velocities in a broad frequency range by surface magneto plasmons, Optics Express 20(9), 2012, pp. 10071–10076, DOI: 10.1364/OE.20.010071.
  • [22] SÁNCHEZ-GIL J., GÓMEZ RIVAS J., Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces, Physical Review B 73(20), 2006, article 205410, DOI: 10.1103/PhysRevB.73.205410.
  • [23] OSZWAŁLDOWSKI M., ZIMPEL M., Temperature-dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb, Journal of Physics and Chemistry of Solids 49(10), 1988, pp. 1179–1185, DOI: 10.1016/0022-3697(88)90173-4.
  • [24] HOWELLS S.C., SCHLIE L.A., Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz, Applied Physics Letters 69(4), 1996, pp. 550–, DOI: 10.1063/1.117783.
  • [25] HALEVI P., RAMOS-MENDIETA F., Tunable photonic crystals with semiconducting constituents, Physical Review Letters 85(9), 2000, pp. 1875–1878, DOI: 10.1103/PhysRevLett.85.1875.
  • [26] DAI X., XIANG Y., WEN S., HE H., Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb, Journal of Applied Physics 109(5), 2011, article 053104, DOI: 10.1063/1.3549834.
  • [27] VAFAPOUR Z., Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications, Applied Optics 57(4), 2018, pp. 722–729, DOI: 10.1364/AO.57.000722.
  • [28] BAI Q., LIU C., CHEN J., CHENG C., KANG M., WANG H.-T., Tunable slow light in semiconductor metamaterial in a broad terahertz regime, Journal of Applied Physics 107(9), 2010, article 093104, DOI: 10.1063/1.3357291.
  • [29] LIN X.-S., HUANG X.-G., Tooth-shaped plasmonic waveguide filters with nanometeric sizes, Optics Letters 33(23), 2008, pp. 2874–2876, DOI: 10.1364/OL.33.002874.
  • [30] PALAMARU M., LALANNE PH., Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion, Applied Physics Letters 78(11), 2001, pp. 1466–1468, DOI: 10.1063/1.1354666.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8b52785-fb56-404d-a0e9-c9f38bf7c625
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.