PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Capabilities of Thomson parabola spectrometer in various laser-plasma- and laser-fusion-related experiments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Thomson parabola spectrometer (TPS) [1] is a well-known, universal diagnostic tool that is widely used in laser plasma experiments to measure the parameters of accelerated ions. In contrast to other popular ion diagnostics, such as semiconductor detectors or ion collectors, the TPS is not greatly affected by electromagnetic pulses generated during high-power laser interaction with matter and can be tuned to acquire data in various energy ranges of accelerated ions, depending on the goal of the experiment. Despite the many advantages of this diagnostic device, processing the collected data is a diffi cult task and requires a lot of caution during interpretation of gathered results. In this work, we introduce the basic principles of operation and data analysis based on the numerical tool created specifi cally for the TPS designed at the Institute of Plasma Physics and Laser Microfusion, present a range of data obtained during various recent experiments in which our TPS was used, and highlight the diffi culties in data analysis depending on the purpose of the experiment and the experimental setup.
Słowa kluczowe
Czasopismo
Rocznik
Strony
29--36
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
  • Institute of Plasma Physics and Laser Microfusion Hery 23 St., 01-497 Warsaw, Poland
  • Institute of Plasma Physics and Laser Microfusion Hery 23 St., 01-497 Warsaw, Poland
  • Institute of Plasma Physics and Laser Microfusion Hery 23 St., 01-497 Warsaw, Poland
  • Institute of Plasma Physics and Laser Microfusion Hery 23 St., 01-497 Warsaw, Poland
  • Institute of Plasma Physics and Laser Microfusion Hery 23 St., 01-497 Warsaw, Poland
Bibliografia
  • 1. Donnan, F. G. (1923). Rays of positive electricity and their application to chemical analyses. By Sir J. J. Thomson, O. M. F. R. S. (2nd ed.). Pp. x + 237. London: Longmans, Green and Co., 1921. Price 16s. Journal of the Society of Chemical Industry, 42(36), 861–861.https://doi.org/10.1002/JCTB.5000423614.
  • 2. Daido, H., Nishiuchi, M., Pirozhkov, A. S., Fernández, J. C., Albright, B. J., Beg, F. N., & Badziak, J. (2018). Laser-driven ion acceleration: methods, challenges and prospects. J. Phys.-Conf. Series, 959(1), 012001. https://doi.org/10.1088/1742-6596/959/1/012001.
  • 3. Margarone, D., Krása, J., Giuffrida, L., Picciotto, A., Torrisi, L., Nowak, T., Musumeci, P., Velyhan, A., Prokůpek, J., Láska, L., Mocek, T., Ullschmied, J., & Rus, B. (2011). Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors. J. Appl. Phys., 109, 103302. https://doi.org/10.1063/1.3585871.
  • 4. Salvadori, M., Consoli, F., Verona, C., Cipriani, M., Anania, M. P., Andreoli, P. L., Antici, P., Bisesto, F., Costa, G., Cristofari, G., de Angelis, R., di Giorgio, G., Ferrario, M., Galletti, M., Giulietti, D., Migliorati, M., Pompili, R., & Zigler, A. (2021). Accurate spectra for high energy ions by advanced time-of-flight diamonddetector schemes in experiments with high Energy and intensity lasers. Sci. Rep., 11(1), 1–16. https://doi.org/10.1038/s41598-021-82655-w.
  • 5. Raczka, P., Nowosielski, L., Rosiński, M., Makaruk, D., Makowski, J., Zaraś-Szydłowska, A., Tchórz, P., & Badziak, J. (2019). Measurement of the electric field strength generated in the experimental chamber by 10 TW femtosecond laser pulse interaction with a solid target. J. Instrum., 14(04). https://doi.org/10.1088/1748-0221/14/04/P04008.
  • 6. Carroll, D. C., Brummitt, P., Neely, D., Lindau, F., Lundh, O., Wahlström, C. G., & McKenna, P. (2010). A modified Thomson parabola spectrometer for high resolution multi-MeV ion measurements-Application to laser-driven ion acceleration. Nucl. Instrum. Methods Phys. Res.-Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 620(1), 23–27. https://doi.org/10.1016/J.NIMA.2010.01.054.
  • 7. Wagner, F., Deppert, O., Brabetz, C., Fiala, P., Kleinschmidt, A., Poth, P., Schanz, V. A., Tebartz, A.,Zielbauer, B., Roth, M., Stöhlker, T., & Bagnoud, V. (2016). Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002.https://doi.org/10.1103/PhysRevLett.116.205002.
  • 8. Alejo, A., Gwynne, D., Doria, D., Ahmed, H., Carroll, D. C., Clarke, R. J., Neely, D., Scott, G. G., Borghesi, M., & Kar, S. (2016). Recent developments in the Thomson parabola spectrometer diagnostic for laser-driven multi-species ion sources. J. Instrum., 11(10), C10005. https://doi.org/10.1088/1748-0221/11/10/C10005.
  • 9. Kojima, S., Inoue, S., Hung Dinh, T., Hasegawa, N., Mori, M., Sakaki, H., Yamamoto, Y., Sasaki, T., Shiokawa, K., Kondo, K., Yamanaka, T., Hashida, M., Sakabe, S., Nishikino, M., & Kondo, K. (2020).Compact Thomson parabola spectrometer with variability of energy range and measurability of angular distribution for low-energy laser-driven accelerated ions Rev. Sci. Instrum., 91, 53305. https://doi.org/10.1063/5.0005450.
  • 10. Woryna, E., Parys, P., Wołowski, J., & Mróz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams, 14(3), 293–321. https://doi.org/10.1017/S0263034600010053.
  • 11. Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas, 8, 2495. https://doi.org/10.1063/1.1350569.
  • 12. Chodukowski, T., Borodziuk, S., Rusiniak, Z., Cikhardt, J., Jach, K., Krasa, J., Rosinski, M., Terwinska, D., Dudzak, R., Pisarczyk, T., Swierczynski, R., 36 P. Tchórz et al. Burian, T., Tchorz, P., Dostal, J., Szymanski, M., Pfeifer, M., Skala, J., Singh, S., Krupka, M., & Krus, M. (2020). Neutron production in cavity pressure acceleration of plasma objects. AIP Adv., 10(8), 085206. https://doi.org/10.1063/5.0005977.
  • 13. Green, B. D., & Goela, J. S. (1986). Ablative acceleration of small particles to high velocity by focused laser radiation. JOSA B, 3(1), 8–14. https://doi.org/10.1364/JOSAB.3.000008.
  • 14. Borodziuk, S., Kasperczuk, A., & Pisarczyk, T. (2009). Cavity pressure acceleration: An efficient laser-based method of production of high-velocity macroparticles. Appl. Phys. Lett., 95, 231501. https://doi.org/10.1063/1.3271693.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8b2da82-6592-4e10-a779-c0a00dbea30e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.