Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we present a computer simulation model that generates the propagation of sound waves to solve a forward problem in ultrasound transmission tomography. The simulator can be used to create data sets used in the supervised learning process. A solution to the "free-space" boundary problem was proposed, and the memory consumption was significantly optimized from O(n2) to O(n). The given method of simulating wave scattering enables the control of the noise extinction time within the tomographic probe and the permeability of the sound wave. The presented version of the script simulates the classic variant of a circular probe with evenly distributed sensors around the circumference.
Czasopismo
Rocznik
Tom
Strony
101--109
Opis fizyczny
Bibliogr. 24 poz., fig.
Twórcy
autor
- Lublin University of Technology, Lublin, Poland
autor
- Institute of Philosophy and Sociology of the Polish Academy of Sciences, Warsaw
autor
Bibliografia
- [1] Antunes dos Santos Júnior, A. (2012). Ultrasonic Waves. BoD – Books on Demand.
- [2] Asadzadeh, M. (2020). An introduction to the finite element method for differential equations. John Wiley & Sons.
- [3] Benito, J., García, A., Gavete, L., Negreanu, M., Ureña, F., & Vargas, A. (2020). Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using generalized finite difference method. Applied Numerical Mathematics, 157, 356–371. https://doi.org/10.1016/j.apnum.2020.06.011
- [4] Bilbao, S. (2013). Modeling of complex geometries and boundary conditions in finite difference/Finite volume time domain room acoustics simulation. IEEE Transactions on Audio, Speech, and Language Processing, 21(7), 1524–1533. https://doi.org/10.1109/tasl.2013.2256897
- [5] Botteldooren, D. (1994). Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid. Journal of the Acoustical Society of America, 95, 2313–2319.
- [6] Chiba, O., Kashiwa, T., Shimoda, H., Kagami, S., & Fukai, I. (1993). Analysis of sound fields in three-dimensional space by the time-dependent finite-difference method based on the leapfrog algorithm. Journal Acoustical Society of Japan, 49, 551–562.
- [7] Degroot‐Hedlin, C. D. (2008). Finite difference time domain synthesis of infrasound propagation through an absorbing atmosphere. The Journal of the Acoustical Society of America, 123(5), 3839–3839. https://doi.org/10.1121/1.2935641
- [8] Forsythe, G. E., & Wasow, W. R. (1960). Finite-difference methods for partial differential equations. John Wiley & Sons.
- [9] Ishimaru, A. (2017). Electromagnetic wave propagation, radiation, and scattering: From fundamentals to applications. John Wiley & Sons.
- [10] Kania, K., Maj, M., Rymarczyk, T., Adamkiewicz, P., & Gołąbek, M. (2020). Image reconstruction in ultrasound transmission tomography using the Fermat’s principle. Przegląd Elektrotechniczny, 1(1), 188–191. https://doi.org/10.15199/48.2020.01.41
- [11] Kania, K., Rymarczyk, T., Maj, M., & Gołąbek, M. (2019). 2019 applications of electromagnetics in modern engineering and medicine (PTZE). IEEE. https://doi.org/10.23919/PTZE.2019.8781687
- [12] Kania, K., Rymarczyk, T., Maj, M., Gołąbek, M., Adamkiewicz, P., & Sikora, J. (2019). 2019 international interdisciplinary PhD workshop (IIPhDW). IEEE. https://doi.org/10.1109/IIPHDW.2019.8755416
- [13] Knabner, P., & Angermann, L. (2021). Numerical methods for elliptic and parabolic partial differential equations: With contributions by Andreas Rupp. Springer Nature.
- [14] Kumar, A. (2004). Isotropic finite-differences. Journal of Computational Physics, 201(1), 109–118. https://doi.org/10.1016/j.jcp.2004.05.005
- [15] Li, W., Li, S., Shao, X., & Li, Z. (2019). Proceedings of the 6th conference on sound and music technology (CSMT): Revised selected papers. Springer.
- [16] Liu, Y., & Sen, M. K. (2009). A new time-space domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics, 228(23), 8779–8806. https://doi.org/10.1016/j.jcp.2009.08.027
- [17] Liu, Y., Ding, L., & Sen, M. K. (2011). Comparisons between the hybrid ABC and the PML method for 2D high‐order finite‐difference acoustic modeling. SEG Technical Program Expanded Abstracts 2011. https://doi.org/10.1190/1.3627807
- [18] Mickens, R. E. (1994). Nonstandard finite difference models of differential equations. World Scientific.
- [19] Polakowski, K. A., Rymarczyk, T., & Sikora, J. (2020). Obrazowanie ultradźwiękowe: Wybrane algorytmy obrazowania. Oficyna Wydawnicza Politechniki Warszawskiej.
- [20] Polakowski, K., & Sikora, J. (2016). Podstawy matematyczne obrazowania ultradźwiękowego. Politechnika Lubelska.
- [21] Sullivan, D., & Young, J. (2001). Far-field time-domain calculation from aperture radiators using the FDTD method. IEEE Transactions on Antennas and Propagation, 49(3), 464–469. https://doi.org/10.1109/8.918622
- [22] Svensson, U. P., Fred, R. I., & Vanderkooy, J. (1999). An analytic secondary source model of edge diffraction impulse responses. The Journal of the Acoustical Society of America, 106(5), 2331–2344. https://doi.org/10.1121/1.428071
- [23] Thomas, J. (2013). Numerical partial differential equations: Finite difference methods. Springer Science & Business Media.
- [24] Thomée, V. (2001). From finite differences to finite elements a short history of numerical analysis of partial differential equations. Partial Differential Equations, 2001, 1–54. https://doi.org/10.1016/b978-0-444-50616-0.50004-x
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8acd21d-6c4f-471b-98ba-fdccc84062e4