PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Automated object and image level classification of TB images using support vector neural network classifier

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, digital Tuberculosis (TB) images have been considered for object and image level classification using Multi Layer Perceptron (MLP) neural network activated by Support Vector Machine (SVM) learning algorithm. The sputum smear images are recorded under standard image acquisition protocol. The TB objects which include bacilli and outliers in the considered images are segmented using active contour method. The boundary of the segmented objects is described by fifteen Fourier Descriptors (FDs). The prominent FDs are selected using fuzzy entropy measures. These selected FDs of the TB objects are fed as input to the SVM learning algorithm of the MLP Neural Network (SVNN) and the result is compared with the state-of-the-art approach, Back Propagation Neural Network (BPNN). Results show that the segmentation method identifies the bacilli which retain their shape in-spite of artifacts present in the images. The methodology adopted has significantly enhanced the SVNN accuracy to 91.3% for object and 92.5% for image level classification than BPNN.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Sri Sairam Engineering College, West Tambaram, Chennai 600044, India
  • Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chrompet, Chennai, India
Bibliografia
  • [1] Knechel NA. Tuberculosis: pathophysiology, clinical features, and diagnosis. Crit Care Nurse 2009;29(2):34–43.
  • [2] Asha T, Natarajan S, Murthy KNB. Diagnosis of tuberculosis using ensemble methods. Proc. of IEEE Int. Conf. Computer science and Information Technology; 2010. pp. 409–12.
  • [3] Elveren E, Yumusak N. Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J Med Syst 2011;35(3):329–32.
  • [4] Ruiz-Manzano J, Blanquer R, Calpe JL, Caminero JA, Cayla J, Domínguez JA, et al. Diagnosis and treatment of tuberculosis. Arch Bronconeumol 2008;44(10):551–66.
  • [5] Patil SA, Udupi VR, Kane CD, Wasif AI, Desai JV, Jadhav AN. Geometrical and texture features estimation of lung cancer and TB images using chest X-ray database. Proc. of Int. Conf. Biomedical and Pharmaceutical Engineering; 2009. pp. 1–7.
  • [6] Tadrous PJ. Computer-assisted screening of Ziehl-Neelsen– stained tissue for mycobacteria. Algorithm design and preliminary studies on 2,000 images. Am J Clin Pathol 2010;133(6):849–58.
  • [7] Osman MK, Mashor MY, Jaafar H. Performance comparison of extreme learning machine algorithms for mycobacterium tuberculosis detection in tissue sections. J Med Imaging Health Inf 2012;2(3):307–12.
  • [8] Forero MG, Cristobal G, Desco M. Automatic identification of mycobacterium tuberculosis by Gaussian mixture models. J Microsc 2006;223(2):120–32.
  • [9] Raof RAA, Mashor MY, Ahmad RB, Noor SSM. Image segmentation of Ziehl-Neelsen sputum slide images for tubercle bacilli detection. In: Ho PG, editor. Image segmentation. InTech; 2011. p. 365–78 [chapter 19].
  • [10] Kowal M, Filipczuk P. Nuclei segmentation for computer- aided diagnosis of breast cancer. Int J Appl Math Comput Sci 2014;24(1):19–32.
  • [11] Kowal M, Filipczuk P, Obuchowicz A, Korbicz J, Monczak R. Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput Biol Med 2013;43:1563–72.
  • [12] Costa MG, Costa-Filho CF, Sena JF, Salem J, de-Lima MO. Automatic identification of mycobacterium tuberculosis with conventional light microscopy. Proc. of IEEE Conf. Eng. Med. Biol. Soc.; 2008. pp. 382–5.
  • [13] Wu Q, Merchant FA, Castleman KR. Microscope image processing. Elsevier; 2008 [chapter 4].
  • [14] Khutlang R, Krishnan S, Whitelaw A, Douglas TS. Automated detection of tuberculosis in Ziehl-Neelsen-stained sputum smears using two one-class classifiers. J Microsc 2010;237(1):96–102.
  • [15] Sadaphal P, Rao J, Comstock GW, Beg MF. Image processing techniques for identifying mycobacterium tuberculosis in Ziehl-Neelsen stains. Int J Tuberc Lung Dis 2008;12(5):579–82.
  • [16] Makkapati V, Agrawal R, Acharya R. Segmentation and classification of tuberculosis bacilli from ZN-stained sputum smear images. Proc. of IEEE Int. Conf. Automation Science and Engineering; 2009. pp. 217–20.
  • [17] Veropoulos K. Machine learning approaches to medical decision making.[Ph.D. dissertation] Dept. Eng. Math., University of Bristol; 2001.
  • [18] Santiago-Mozos R, Fernandez-Lorenzana R, Perez-Cruz F, Artes-Rodriguez A. On the uncertainty in sequential hypothesis testing. Proc. of IEEE Int. Symposium on Biomedical Imaging: From Nano to Macro; 2008. pp. 1223–6.
  • [19] Li C, Kao CY, Gore JC, Ding Z. Implicit active contours driven by local binary fitting energy. Proc. of IEEE Conf. Computer Vision and Pattern Recognition. IEEE Computer Society; 2007. p. 1–7.
  • [20] Airouche M, Bentabet L, Zelmat M. Image Segmentation using active contour model and level set method applied to detect oil spills. Proc. of the World Congress on Engineering; 2009. pp. 846–50.
  • [21] Zhang D, Lu G. A comparative study on shape retrieval using Fourier descriptors with different shape signatures. J Visual Commun Image Represent 2003;14(1):41–60.
  • [22] Luukka P. Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst Appl 2011;38(4):4600–7.
  • [23] Boskovitz V, Guterman H. An adaptive neuro-fuzzy system for automatic image segmentation and edge detection. IEEE Trans Fuzzy Syst 2002;10(2):247–62.
  • [24] Priya E, Srinivasan S, Ramakrishnan S. Retrospective non- uniform illumination correction techniques in microscopic digital TB images. Microsc Microanal 2014;20(5):1382–91.
  • [25] Chan T, Moelich M, Sandberg B. Some recent developments in variational image segmentation in image processing based on partial differential equations. In: Tai XC, Lie KA, Chan TF, Osher S, editors. Proc. Int. Conf. PDE-Based Image Processing and Related Inverse Problems. Berlin/ Heidelberg: Springer-Verlag; 2007. p. 175–211.
  • [26] Jiang X, Nie S. Urine sediment image segmentation based on level set and Mumford-Shah model. The 1st Int. Conf. Bioinformatics and Biomedical Engineering; 2007. pp. 1028–30.
  • [27] Chang JN. Automated tuberculosis diagnosis using fluorescence images from a mobile microscope.[M.S. thesis] Dept. Electr. Eng. Comput. Sci., University of California, Berkeley; 2012.
  • [28] Ludwig O, Nunes U. Novel maximum-margin training algorithms for supervised neural networks. IEEE Trans Neural Netw 2010;21(6):972–84.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8ac1e8e-6e0b-4fde-b165-4a7c81ea48aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.