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1. Introduction

The advances of modern signal processing can improve measu-
rement accuracy and implement fairly complex measurement 
procedures. Artificial neural networks are one of the promising 
areas for the development of intelligent information manage-
ment and processing technologies.Neural networks are used to 
solve complex problems that require analytical calculations 
similar to those made by the human brain, including pattern 
recognition, classification (clustering), forecasting, approxi-
mation, decision making and control, data compression and 
associative memory.

Currently, there are many studies of neural networks. The 
works of Wasserman [1], Haykin [2], Rojas [3] described in suf-
ficient detail the theoretical foundations of neural networks and 
practical recommendations for their use. The main advantages 
of neural networks over traditional computational methods are 
the ability to learn, adapt to environmental changes, the fle-
xibility of the structure, fault tolerance.Neural networks are 
also an essential tool for machine learning in artificial intel-
ligence [4].

Recently, neural network technologies are increasingly being 
used in measurement practice. The development of neural 
network dynamic models of measuring devices is one of the 
promising areas of intellectualization of modern measurement 
technology. Such models significantly improve the metrologi-
cal characteristics and efficiency of existing nonlinear dynamic 
measuring transducers [5–7]. The use of neural network dyna-
mic models allows the creation of intelligent measuring devices 
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with the ability to individualize their dynamic parameters to 
external factors and measurement conditions.

2. Problem statement

In measurement practice, one often has to deal with dynamic 
measuring devices having substantially nonlinear characte-
ristics. It is necessary to have an appropriate mathematical 
model to analyze such objects and study their behaviour. The 
theoretical analysis allows obtaining a mathematical descrip-
tion in the form of differential equations. Experimental analysis 
based on observations can result in a parametric or nonpa-
rametric model. The most widespread are parametric models 
that require solving structural and parametric identification 
problems and have a limited number of parameters.

Let us consider a nonlinear dynamic measuring transducer, 
generally described by the nonlinear autoregressive equation 
(NARX model) [8]

  
  (1)

where t = 0, 1, 2, … is the discrete time, y(t) is the output 
signal, x(t) is the input signal, and x(t) is the additive random 
noise reduced to the output, describing the influence of inter-
nal and external disturbing factors. The nonlinearity of the 
conversion function of the measuring chain link is an undesi-
rable property since it introduces an additional error into the 
measurement result.

A universal method for reducing the nonlinearity of the 
conversion function is its algorithmic correction using an addi-
tional corrector filter. This filter implements theinverserelation 
to the conversion function (1): 

 
  

(2)
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This device, connected in series with the measuring device, 
allows compensating for its nonlinear dynamics and obtaining 
an estimate of the measured input signal. An additional con-
dition is the invariance of such a corrector to any nonlinear 
conversion function.

It is proposed to use a three-layer perceptron supplemented 
by delay lines of input signals as a corrector that implements 
the inverse model of a nonlinear measuring device. This cho-
ice is justified by the fact that neural networks are nonlinear, 
have good approximating properties and can be synthesized by 
training [1–4].

3. Neural network corrector for 
the nonlinearity of the dynamic 
measuring device

The search for unknown optimal parameters of a neural net-
work model is carried out using the training procedure shown 
in Fig. 1. As a training sample for adjusting the synaptic 
weights of the neural network, time sequences of the input 
and output signals of the nonlinear measuring device are used.

where Wij is the synaptic weight of the connection of the i-th 
input synapse with the j-th neuron of the hidden layer, and 
ji(t) is the i-th component of the vector of input signals of 
the perceptron.

The vector of input signals of the perceptron with the dimen-
sion  is described as

    
  

(6)

The neural network training algorithm consists of the fol-
lowing steps:
1. assign random initial values to the synaptic weights of neu-

rons;
2. feed the next sample from the training set <y(t), x(t)> to 

the input of the neural network;
3. calculate the output signal )(̂tx  and the error 

)(̂)()( txtxte −= ;
4. correct the synaptic weights of neurons using backpropa-

gation [1–4];
5. repeat steps 2–4 until the value of the objective function 

(3) becomes sufficiently small or until the number of iter-
ations (learning epochs) reaches the specified value. After 
that, the training is completed.

4. Modeling results

Computer simulation modelling was performed tostudy the 
proposed inverse neural network model of a nonlinear dynamic 
measuring device. A three-layer perceptron with sigmoid acti-
vation functions in the hidden layer and an adder at the out-
put was used as a neural network. The synaptic weights were 
adjusted using the Levenberg-Marquardt algorithm, which has 
a higher speed compared to the gradient descent method. The 
neural network modelwas trained for 100 epochs. The com-
puter with double CPU 3.3 GHz and 4 GB of RAM was used 
for modelling.

Fig. 1. Training of a neural network model
Rys. 1. Uczenie modelu sieci neuronowej

The signal x(t) is fed to the input of the measuring device, 
and thenits output signal y(t) is measuredand fed to the input 
of the neural network model. The output signal of the correc-
tor )(̂tx  is compared to the input signal x(t), and the error 
signal )(̂)()( txtxte −=  is generated. This signal is used to 
adjust the synaptic weights of the neural network model. The 
adjustment is carried out so that the output signal of the cor-
rector )(̂tx  is the best approximation of the input signal of the 
measuring device x(t). In this case, the optimality criterion is 
to ensure a minimum of the objective function

 
. (3)

The neural network corrector is implemented based on 
a three-layer perceptron supplemented by delay lines of input 
signals. It is an inverse model of a nonlinear dynamic measu-
ring device. The structure of the dynamic neural network 
model is shown in Fig. 2.

The output layer of the perceptron is made up of one neuron, 
which forms a signal as a weighted sum of the output signals 
of the hidden layer neurons
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where Vj, j = 1, …, k are the synaptic weights of the output 
network neuron, and Oj are the output signals of the hidden 
layer neurons.

Neurons with the sigmoid activation functions form the hidden 
layer. The following equations describe each neuron of this layer:

 

   (5)

Fig. 2. Structure of the dynamic neural network model
Rys. 2. Struktura modelu dynamicznej sieci neuronowej
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A nonlinear measuring device was modelled by a serial con-
nection of nonlinear static and linear dynamic links (Hammer-
stein model) described by equations:

The influence of the type of input calibration signal on the 
training of a neural network model was studied. Samples for 
the network training were selected by feeding the following 
calibration signals to the input of the measuring device:
1) pseudo-random white Gaussian noise;
2) periodic sequence of rectangular pulses with a period T = 100;
3) periodic sequence of triangular pulses with a period T = 100;
4) sinusoidal signals with different frequencies
   
5) sum of two sinusoidal signals with different frequencies 

and amplitudes 
6) frequency-modulated signal with a linear law of frequ-

ency variation.

The standard uncertainty of type A of the signal restored by 
the corrector was chosen as a criterion of the system efficiency:
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where N = 500 is the length of the training sample collection.

The results of the modelling, which was carried out for diffe-
rent types of input signals, are presented in Table 1 and Fig. 3.

5. Conclusions

The obtained results confirm the operability of the proposed 
neural network nonlinearity correctorand are entirely consistent 
with the theoretical assumptions. This opens up vast possibilities 
for using neural network architectures to solve the problems of 
inverse modelling of nonlinear dynamic measuring instruments.

An advantage of the proposed approach is the invariance of 
the neural network model to thetype of nonlinear transforma-
tion. A positive factor is also the ability to synthesize the correc-
tor by training without involving complex design methods. This 
opens up great opportunities for creating intelligent measuring 
systems with adaptive properties based on the proposed neural 
network model.

Table 1. Modelling results
Tabela 1. Wyniki modelowania

Type of input signal
Standard uncertainty 

Random signal 0.324

Rectangular impulses with period T = 100 0.352

Triangular impulses with period T = 100 0.155

Sinusoidal signals:

 

0.030
0.064
0.066

Sum of two sinusoids
0.118

Frequency-modulated signal 0.434 Fig. 3. Input signal and signal restored by the corrector
Rys. 3. Sygnał wejściowy I sygnał odtworzony przez korektor

a) rectangular impulses
a) impulsy prostokątne

b) sinusoidal signal
b) sygnał sinusoidalny

c) sum of two sinusoids
c) suma dwu sinusoid

d) triangular impulses
d) impulsy trójkątne
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Streszczenie: Zaproponowano kompensator sieci neuronowej dla nieliniowości dynamicznego przyrządu 
pomiarowego, który umożliwia odtworzenie wartości mierzonego sygnału wejściowego. Odwrotny 
model nieliniowego dynamicznego urządzenia pomiarowego realizowany jest w oparciu o trójwarstwowy 
perceptron uzupełniony o linie opóźniające sygnałów wejściowych. Właściwości proponowanego 
kompensatora sieci neuronowej są badane poprzez symulacyjne modelowanie komputerowe 
z wykorzystaniem różnego rodzaju sygnałów wejściowych kalibracji do uczenia sztucznej sieci neuronowej. 

Keywords: sztuczna sieć neuronowa, trójwarstwowy perceptron, uczenie, model odwrotny, kompensator sieci neuronowej

Korekcja nieliniowości za pomocą modeli sieci neuronowych 
w zastosowaniu do dynamicznych urządzeń pomiarowych
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