PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FPGA implementation of reverse residue conversion based on the new Chinese Remainder Theorem II- Part II: experimental results

Identyfikatory
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering 2012 (23-24.04.2012; Poznań, Polska)
Języki publikacji
Abstrakty
EN
This work describes a hardware realization of the converter of numbers from the Residue Number System (RNS) to the binary system. The converter is based on the new form of the Chinese Remainder Theorem (CRT) termed the New CRT II. The theoretical aspects of conversion by this method have been described in Part I. The implementation of the converter has been carried out in the Xilinx FPGA environment. The general architecture of the system is shown, also the realizations of the selected blocks of the converter are described. The hardware amount and attainable pipelining rate are given. The converter has been realized for the RNS base composed of eight 5-bit moduli that gives the dynamic range of about 37 bits.
Słowa kluczowe
Rocznik
Tom
Strony
139--147
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Gdansk University of Technology
autor
  • Gdansk University of Technology
autor
  • Gdansk University of Technology
Bibliografia
  • [1] Szabo N.S. and Tanaka R.J., Residue Arithmetic and its Applications to Computer Technology, New York, McGraw-Hill, 1967.
  • [2] Soderstrand M. et. al, Residue Number System Arithmetic. Modern Applications in Digital Signal Processing, IEEE Press, NY, 1986.
  • [3] Omondi A., Premkumar B., Residue Number Systems: Theory and Implementation, London, Imperial College Press, 2007.
  • [4] Pontarelli S., Cardarilli G., Re M., Salsano A., Totally Fault Tolerant RNS Based FIR Filters, in Proc. IOLTS, 2008, Pages 192-194.
  • [5] Nannarelli A., Re M., Cardarilli G. C., Tradeoffs between residue number system and traditional FIR filters, 2001 International IEEE Symposium on Circuits and Systems ISCAS 2001, Pages 305-308.
  • [6] Tseng B-D, Jullien G.A., Miller, W.C., Implementation of FFT Structures Using the Residue Number System, IEEE Transactions on Computers, November 1979, Volume C-28, Pages 831-845.
  • [7] Vaccaro J., Johnson B., Nowacki C., A systolic discrete Fourier transform using residue number systems over the ring of Gaussian integers, 1986 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '86 , April 1986, Volume 11, Pages 1157-1160.
  • [8] Mellott J.D., Lewis, M., Taylor, F., Coffield, P., ASAP-a 2D DFT VLSI processor and architecture, 1996 International IEEE Symposium on Circuits and Systems ISCAS '96., 12-15 May 1996, Volume 2, Pages 261-264.
  • [9] Wang W., Swamy, M.N.S., Ahmad, M.O., RNS aplication for digital image processing, Proceedings of 4th IEEE International Workshop on System-on-Chip for Real-Time Applications, 19-21 July 2004, Pages 77-80.
  • [10] Czyżak M., Smyk R., High-speed FPGA pipelined binary-to-residue converter, Poznan University of Technology Academic Journals. Electrical Engineering -Electrical Engineering. - 2008, nr 58, Pages 65-72.
  • [11] Huang C.H., "A fully parallel mixed-radix conversion algorithm for the residue number system, " IEEE Trans, on Computers, Volume. 32, April 1983, Pages 398-402.
  • [12] Czyżak M., Smyk R., FPGA realization of the high-speed residue-to-binary converter based on Chinese Remainder Theorem, Poznan University of Technology Academic Journals. Electrical Engineering - 2010, nr 63, Pages 197-205.
  • [13] Czyżak M., "An improved high-speed residue-to-binary converter based on the Chinese remainder theorem, "Pomiary Automatyka Kontrola. - Volume 53, nr 4 (2007), Pages 72-75.
  • [14] Wang Z., Jullien G.A., Miller W.C., An Improved Residue-To-Binary Converter, IEEE Trans. Circuits Syst.-I: Fundamental Theory and Applications, Volume 47, September 2000, Pages 1437-1440.
  • [15] Elleithy K.M., Bayoumi M.A., Fast and flexible architectures for RNS arithmetic decoding, IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Processing, Volume 39, No. 4, April 1992, Pages 226-235.
  • [16] Cardarilli G.C., Re M., Lojacono R., A Systolic Architecture For High Performance Scaled Residue To Binary Conversion, IEEE Trans. Circuits Syst.-I: Fundamental Theory And Applications, Volume. 47, October 2000, Pages 67-669.
  • [17] Wang Y., Residue-to-binary Converters Based On the new Chinese Remainder Theorems, IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Processing, Volume 47, No. 4, March 2000, Pages. 197-205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8a72579-23a8-45a1-9d5a-0deea54c398c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.