Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Selective laser melting (SLM) high-entropy alloy (HEA)-formed parts have certain gaps in dimensional accuracy and surface finish compared with traditional subtractive molding parts, which is the main problem of selective laser melting high-entropy alloy (SLM-HEA) at present. Three different HEAs were prepared using SLM technology, and micro-grinding experiments were carried out to explore the effects of different grinding parameters, processing methods, powder types, and elemental types on the surface roughness, surface morphology, and sub-surface microstructure of SLM-HEAs. The experimental results show that with the increase of grinding speed, the decrease of grinding depth and feed rate, the surface roughness Ra and Rz decrease, and the surface quality improves; under the same processing parameters, the Ra of up-grinding is 37.04% lower than that of down-grinding, the Ra of prealloyed powder HEA is 10.11% lower than that of the mixed powder HEA, and the degree of surface tearing is light. The Ra of FeCoNiCrTi 0.5 is 12.52% lower than that of FeCoNiCrAl 0.5 , and the micro-crushing caused by surface tearing is reduced. The thickness of the grinding metamorphic layer increases with the increase of grinding speed and grinding depth, under the same grinding parameters, the thickness of the grinding metamorphic layer of FeCoNiCrTi 0.5 is smaller than that of FeCoNiCrAl 0.5 . This work provides theoretical guidance and data support for the efficient machining of HEA, which is helpful to the design and manufacture of SLM-HEA parts.
Czasopismo
Rocznik
Tom
Strony
art. no. e27, 2024
Opis fizyczny
Bibliogr. 28 poz., fot., rys., wykr.
Twórcy
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
Bibliografia
- 1. Lu J, Zhuo L. Additive manufacturing of titanium alloys via selective laser melting: fabrication, microstructure, post-processing, performance and prospect. Int J Refract Met Hard Mater. 2023.https://doi.org/10.1016/j.ijrmhm.2023.106110.
- 2. Shen Q, Kong X, Chen X. Fabrication of bulk Al-Co-Cr-Fe-Nihigh-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): microstructure and mechanical properties. J Mater Sci Technol. 2021;74:136–42. https:// doi. org/ 10.1016/j.jmst.2020.10.037.
- 3. Jahan MP, Perveen A, Rumsey AM. A review on the conventional, non-conventional, and hybrid micromachining of glass. Mach SciTechnol. 2019;23(2):264–338. https://doi.org/10.1080/10910344.2019.1575411.
- 4. Cheng J, Wu J. Experimental investigation of fracture behaviors and sub-surface cracks in micro-slot-grinding of monocrystalline sapphire. J Mater Process Technol. 2017;242:160–81. https://doi.org/10.1016/j.jmatprotec.2016.11.030.
- 5. Xuehui C, Kai W, Weihao M, et al. Effect of layer-by-layer laserremelting process on the microstructure and performance of selective laser melting 316L stainless steel. Int J Adv Manuf Technol.2023. https://doi.org/10.1007/s00170-023-12078-6.
- 6. Kuntoğlu M, Salur E, Canli E, et al. A state of the art on surface morphology of selective laser-melted metallic alloys. Int J AdvManuf Technol. 2023;127(3):1103–42. https://doi.org/10.1007/s00170-023-11534-7.
- 7. Barış Ş, Oktay Ç, Celalettin Y. Effects of process parameters on surface quality and mechanical performance of 316L stainless steel produced by selective laser melting. Optik. 2023. https://doi.org/10.1016/j.ijleo.2023.171050.
- 8. Bi J, Wu L, Liu Z, et al. Formability, surface quality and compressive fracture behavior of AlMgScZr alloy lattice structure fabricated by selective laser melting. J Market Res. 2022;19:391–403.https://doi.org/10.1016/j.jmrt.2022.05.051.
- 9. Korkmaz ME, Gupta MK, Robak G, et al. Development of lat-tice structure with selective laser melting process: a state of theart on properties, future trends and challenges. J Manuf Process.2022;81:1040–63. https://doi.org/10.1016/j.jmapro.2022.07.051.
- 10. Qiao G, Zhang B, Guo S, et al. Surface morphology in high-speedgrinding of TMCs fabricated by selective laser melting. J ManufProcess. 2023;97:200–9. https://doi.org/10.1016/j.jmapro.2023.04.064.
- 11. Guo J, Goh M, Zhu Z, et al. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater Des.2018;153:211–20. https://doi.org/10.1016/j.matdes.2018.05.012.
- 12. Simoni F, Huxol A, Villmer F. Improving surface quality in selective laser melting based tool making. J Intell Manuf. 2021. https://doi.org/10.1007/s10845-021-01744-9.
- 13. Korkmaz ME, Gupta MK, Waqar S, et al. A short review on thermal treatments of Titanium & Nickel based alloys processed by selective laser melting. J Market Res. 2022;16:1090–101. https://doi.org/10.1016/j.jmrt.2021.12.061.
- 14. Sun Y, Su Z, Gong Y, et al. Analytical and experimental study on micro-grinding surface-generated mechanism of DD5 single-crystal superalloy using micro-diamond pencil grinding tool.Arch Civ Mech Eng. 2021;21:1–22. https:// doi. org/ 10. 1007/s43452-020-00163-6.
- 15. Wu J, Cheng J, Gao C, et al. Research on predicting model of surface roughness in small-scale grinding of brittle material considering grinding tool topography. Int J Mech Sci. 2020;166:105263. https://doi.org/10.1016/j.ijmecsci.2019.105263.
- 16. Setti D, Arrabiyeh PA, Kirsch B, et al. Analytical and experimental investigations on the mechanisms of surface generationin micro grinding. Int J Mach Tools Manuf. 2020;149: 103489.https://doi.org/10.1016/j.ijmachtools.2019.103489.
- 17. Yang M, Li C, Said Z, et al. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding. J ManufProcess. 2021;71:501–14. https:// doi. org/ 10. 1016/j. jmapro.2021.09.053.
- 18. Yin G, Wang D, Cheng J. Experimental investigation on micro-grinding of SiCp/Al metal matrix composites. Int J AdvManuf Technol. 2019;102:3503–17. https:// doi. org/ 10. 1007/s00170-019-03375-0.
- 19. Gong S, Zhu X, Sun Y, et al. Experimental research on surface characteristics and sub-surface damage behavior of monocrystal sapphire induced by helical micro abrasive tools. Ceram Int.2022;48(15):21500–13. https:// doi. org/ 10. 1016/j. ceram int.2022.04.114.
- 20. Ren Y, Li C, Li W, et al. Study on micro-grinding quality inmicro-grinding tool for single crystal silicon. J Manuf Process.2019;42:246–56. https://doi.org/10.1016/j.jmapro.2019.04.030.
- 21. Wu J, Cheng J, Gong Y. Modeling and experimental study of unequal interval intermittent (UII) diamond micro grinding tool.Int J Adv Manuf Technol. 2019;103:2445–68. https://doi.org/10.1007/s00170-019-03646-w.
- 22. Sun Y, Jin L, Gong Y, et al. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. J Manuf Process.2022;73:799–814. https://doi.org/10.1016/j.jmapro.2021.11.049.
- 23. Li L, Ren X, Feng H, et al. A novel material removal rate model based on single grain force for robotic belt grinding. J ManufProcess. 2021;68:1–12. https://doi.org/10.1016/j.jmapro.2021.05.029.
- 24. Malkin S. Grinding technology: theory and applications of machining with abrasives. Chichester: E Horwood Halsted Press;1998.
- 25. Cheng J, Gong YD. Experimental study of surface generation and force modeling in micro-grinding of single crystal silicon considering crystallographic effects. Int J Mach Tools Manuf.2014;77:1–15. https://doi.org/10.1016/j.ijmachtools.2013.10.003.
- 26. Hecker RL, Liang SY. Predictive modeling of surface roughnessin grinding. Int J Mach Tools Manuf. 2003;43(8):755–61. https://doi.org/10.1016/S0890-6955(03)00055-5.
- 27. Su H, Yang C, Gao S, et al. A predictive model on surface roughness during internal traverse grinding of small holes. Int J AdvManuf Technol. 2019;103:2069–77. https:// doi. org/ 10. 1007/s00170-019-03643-z.
- 28. Feng J, Chen P, Ni J. Prediction of grinding force in microgrinding of ceramic materials by cohesive zone-based finite element method. Int J Adv Manuf Technol. 2013;68(5):1039–53. https://doi.org/10.1007/s00170-013-4895-z.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8a428c0-6b7e-4002-bafc-4c324bab6f05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.