PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dolphin-Inspired Target Detection for Sonar and Radar

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gas bubbles in the ocean are produced by breaking waves, rainfall, methane seeps, exsolution, and a range of biological processes including decomposition, photosynthesis, respiration and digestion. However one biological process that produces particularly dense clouds of large bubbles, is bubble netting. This is practiced by several species of cetacean. Given their propensity to use acoustics, and the powerful acoustical attenuation and scattering that bubbles can cause, the relationship between sound and bubble nets is intriguing. It has been postulated that humpback whales produce ‘walls of sound’ at audio frequencies in their bubble nets, trapping prey. Dolphins, on the other hand, use high frequency acoustics for echolocation. This begs the question of whether, in producing bubble nets, they are generating echolocation clutter that potentially helps prey avoid detection (as their bubble nets would do with man-made sonar), or whether they have developed sonar techniques to detect prey within such bubble nets and distinguish it from clutter. Possible sonar schemes that could detect targets in bubble clouds are proposed, and shown to work both in the laboratory and at sea. Following this, similar radar schemes are proposed for the detection of buried explosives and catastrophe victims, and successful laboratory tests are undertaken.
Słowa kluczowe
EN
Rocznik
Strony
319--332
Opis fizyczny
Bibliogr. 67 poz., fot., rys., wykr.
Twórcy
autor
  • Research (ISVR) Faculty of Engineering and the Environment University of Southampton Highfield, Southampton SO17 1BJ, UK
autor
  • Research (ISVR) Faculty of Engineering and the Environment University of Southampton Highfield, Southampton SO17 1BJ, UK
Bibliografia
  • 1. Ainslie M. (2010), Principles of Sonar Performance Modelling, Springer Praxis Books, ISBN: 978-3-54087661-8.
  • 2. Ainslie M.A., Leighton T.G. (2009), Near resonant bubble acoustic cross-section corrections, including examples from oceanography, volcanology, and biomedical ultrasound, J. Acoust. Soc. Am., 126, 5, 2163-2175.
  • 3. Ainslie M.A., Leighton T.G. (2011), Review of theory for scattering and extinction cross-sections, damping factors and resonance frequencies of spherical gas bubbles, J. Acoust. Soc. Am., 130, 5, 3184-3208 (doi: 10.1121/1.3628321).
  • 4. Au W.W.L., Martin S.W. (2012), Why dolphin biosonar performs so well in spite of mediocre ‘equipment’, IET Radar, Sonar & Navigation, 6, 6, 566-575 (doi: 10.1049/iet-rsn.2011.0194).
  • 5. Acevedo J., Plana J., Aguayo-Lobo A., Paste- NE L.A. (2011), Surface feeding behavior of humpback whales in the Magellan Strait, Revista de Biologla Marina y Oceanografia, 46, 3, 483-490.
  • 6. Bachkosky J.M., Brancati T., Conley D.R., Douglass J.W., Gale P.A., Held D., Hettche L.R., Luyten J.R., Peden I.C., Rumpf R.L., Salkind A., Sinnett J.M., Smith K.A., Whistler Jr. G.E. (2000), Unmanned Vehicles in Mine Countermeasure, Naval Research Advisory Committee Report, Arlington, 2000.
  • 7. Baranowska A. (2012), Theoretical studies of nonlinear generation efficiency in a bubble layer, Archives of Acoustics, 37, 3, 287-294 (doi: 10.2478/v10168-012- 0037-0).
  • 8. Bass K., Leith B., Attenborough S.D. (2009), Nature’s Great Events: 3-The Great Feast (BBC Consumer Publishing).
  • 9. Burdic W.S. (1984), Underwater acoustic system, analysis, Prentice-Hall Signal Processing series, Englewood Cliffs, NJ: Prentice-Hall, Inc.
  • 10. Birkin P.R., Leighton T.G., Power J.F., Simpson M.D., Vincotte A.M.L., Joseph P.F. (2003), Experimental and theoretical characterization of sonochemical cells. Part 1: Cylindrical reactors and their use to calculate speed of sound, J. Phys. Chem. A, 107, 306-320.
  • 11. Burns P.N., Wilson S.R. (2006), Microbubble Contrast for Radiological Imaging: 1. Principles, Ultrasound Quarterly, 22, 1, 5-13.
  • 12. Byatt A., Fothergill A., Holmes M., Attenborough S.D. (2001), The Blue Planet (BBC Consumer Publishing).
  • 13. Brooks I M, Yelland M J, Upstill-Goddard R C, Nightingale P D, Archer S, D’asaro E, Beale R, Beatty C, Blomquiuist B, Bloom A A, Brooks B J, Cluderay J, Coles D, Dacey J, Degrandpre M, Dixon J, Drennan W M, Gabriele J, Goldson L, Hardman-Mountford N, Hill M K, Horn M, Hsueh P-C, Huebert B, De Leeuwuw G, Leighton T G, Liddicicoat M, Lingard J J N, Mcneil C, Mcquaid J B, Moat B I, Moore G, Neill C, Norris S J, O’doherty S, Pascal R W, Prytherch J, Rebozo M, Sahlee E, Salter M, Schuster U, Skjelvan I, Slagter H, Smith M H, Smith P D, Srokosz M, Stephens J A, Taylor P K, Telszewski M, Walsh R, Ward B, Woolf D K, Young D, Zemmmmelink H, (2009) UK–SOLAS Field Measurements of Air–Sea Exchange: Instrumentation, Bulletin of The American Meteorological Society, 90, 629-644 (Doi: 10.1175/2008bams2578.1)
  • 14. Campbell G.M., Mougeot E. (1999), Creation and characterisation of aerated food products, Trends Food Sci. Technol., 10, 283-296.
  • 15. Capus C., Pailhas Y., Brown K., Lane D.M. (2007), Bio-inspired wideband sonar signals based on observations of the bottlenose dolphin (Tursiops trun- catus), J. Acoust. Soc. Am., 121, 594-604 (doi: 10.1121/1.2382344).
  • 16. Carugo D., Ankrett D.N., Glynne-Jones P., Capretto L., Boltryk R.J., Zhang X., Townsend P.A., Hill M. (2011), Contrast agent-free sono- poration: The use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents, Biomicrofluidics, 5, 4, 044108.
  • 17. Chua G.H., White P.R., Leighton T.G. (2012), Use of clicks resembling those of the Atlantic bottlenose dolphin (Tursiops truncatus) to improve target discrimination in bubbly water with biased pulse summation sonar, IET Radar Sonar & Navigation, 6, 6, 510-515 (doi: 10.1049/iet-rsn.2011.0199).
  • 18. Clarke J.W.L., Leighton T.G. (2000), A method, for estimating time-dependent acoustic cross-sections of bubbles and bubble clouds prior to the steady state, Journal of the Acoustical Society of America, 107, 4, 1922-1929.
  • 19. Deane G.B., Stokes M.D. (1999), Air entrainment processes and bubble size distributions in the surf zone, J. Phys. Oceanogr., 29, 1393-1403.
  • 20. Farmer D.M., McNeil C.L., Johnson B.D. (1993), Evidence for the importance of bubbles in increasing air-sea gas flux, Nature, 361, 620-623 (doi: 10.1038/361620a0).
  • 21. Ferrara K., Pollard R., Borden M. (2007), Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery, Annu. Rev. Biomed. Eng., 9, 415-447.
  • 22. Finfer D.C., White P.R., Chua G.H., Leighton T.G. (2012), Review of the occurrence of multiple pulse echolocation clicks in recordings from small odontocetes, IET Radar Sonar & Navigation, 6, 6, 545-555 (doi: 10.1049/iet-rsn.2011.0348).
  • 23. Gewalt E. (1989), Orinoco-Freshwater-dolphins (Inia geoffrensis) using self-produced air bubble ‘rings’ as toys, Aquatic Mammals, 15.2, 73-79.
  • 24. Grelowska G., Kozaczka E., Kozaczka S., Szymcza W. (2013) Underwater noise generated by a small ship in the shallow sea, Archives of Acoustics, 38, 3, 351-356 (doi: 10.2478/aoa-2013-0041).
  • 25. KLUSEK Z., SUTIN A., MATVEEV A., POTAPOV A.(1995), Observation of nonlinear scattering of acoustical waves at sea sediments, Acoust. Lett., 18, 198-203.
  • 26. Kozaczka W., Grelowska g. (1999), An experimental investigation of the finite amplitude wave, Archives of Acoustics, 24, 1, 75-84.
  • 27. Kozaczka E., Grelowska G. (2004), Shipping noise, Archives of Acoustics, 29, 2, 169-176.
  • 28. Lauterborn W., Kurz T., Mettin R., Koch P., Kroninger D., Schanz D. (2008), Acoustic cavitation and bubble dynamics, Archives of Acoustics, 33, 609-617.
  • 29. Leighton T.G. (2004), From seas to surgeries, from babbling brooks to baby scans: The acoustics of gas bubbles in liquids, International Journal of Modern Physics B, 18, 25, 3267-314.
  • 30. Leighton T.G (2007), What is ultrasound?, Progress in Biophysics and Molecular Biology, 93, 1-3, 3-83.
  • 31. Leighton T.G., Baik K., Jiang J. (2012a), The use of acoustic inversion to estimate the bubble size distribution in pipelines, Proceedings of the Royal Society London A, 468, 2461-2484 (doi: 10.1098/rspa.2012.0053).
  • 32. Leighton T.G., Balleri A. (2012), Biologically- inspired radar and sonar systems, Guest Editorial for Special Issue of IET Radar, Sonar and Navigation, 6, 6, 507-509 (doi: 10.1049/iet-rsn.2012.0146).
  • 33. Leighton T.G., Birkin P.R., Hodnett M., Zeqiri B., Power J.F., Price G.J., Mason T., Plattes M., Dezhkunov N., Coleman A.J. (2005), Characterisation of measures of reference acoustic cavitation (COMORAC): An experimental feasibility trial, [in:] Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, A.A. Doinikov [Ed.], Research Signpost, Kerala, Research Signpost, 37-94.
  • 34. Leighton T.G., Chua G.H., White P.R. (2012b), Do dolphins benefit from nonlinear mathematics when processing their sonar returns?, Proceedings of the Royal Society London A, 468, 2147, 3517-3532 (doi: 10.1098/rspa.2012.0247) (see Royal Society video at http://rspa.royalsocietypublishing.org/content/suppl/ 2012/07/19/rspa.2012.0247.DC1).
  • 35. Leighton T.G., Chua G.H., White P.R., Tong K.F., Griffiths H.D., Daniels D.J. (2013), Radar clutter suppression and target discrimination using twin inverted pulses, Proceedings of the Royal Society London A, 469, 2160, 20130512-[14pp] (doi: 10.1098/rspa.2013.0512).
  • 36. Leighton T.G., Farhat M., Field J.E., Avella F. (2003), Cavitation luminescence from flow over a hydrofoil in a cavitation tunnel, Journal of Fluid Mechanics, 480, 43-60.
  • 37. Leighton T.G., Fedele F., Coleman A., McCarthy C., Ryves S., Hurrell A., De Stefano A., White P.R. (2008a), A passive acoustic device for real-time monitoring the efficacy of shockwave lithotripsy treatment, Ultrasound in Medicine and Biology, 34, 10, 1651-1665.
  • 38. Leighton T.G., Finfer D., Grover E., White P.R. (2007a), An acoustical hypothesis for the spiral bubble nets of humpback whales and the implications for whale feeding, Acoustics Bulletin, 22, 1, 17-21.
  • 39. Leighton T.G., Finfer D.C., White P.R. (2007b), Cavitation and cetacean, Revista de Acustica, 38, 3/4, 37-81.
  • 40. Leighton T.G., Finfer D.C., White P.R. (2007c), Sonar which penetrates bubble clouds (Invited Paper), Proceedings of the Second International Conference on Underwater Acoustic Measurements, Technologies and Results, Heraklion, Crete, Greece, 25-29 June, 555562.
  • 41. Leighton T.G., White P.R., Finfer D.C. (2008b), Hypotheses regarding exploitation of bubble acoustics by cetaceans, Proceedings of the 9th European Conference on Underwater Acoustics, (ECUA2008), Paris, France, 29 June-4 July, 77-82.
  • 42. Leighton T.G., Finfer D.C., White P.R., Chua G.H., Dix J.K. (2010), Clutter suppression and classification using Twin Inverted Pulse Sonar (TWIPS), Proceedings of the Royal Society A, 466, 3453-3478.
  • 43. Leighton T.G., Finfer D.C., Chua G.H., White P.R., Dix J.K. (2011), Clutter suppression and classification using Twin Inverted Pulse Sonar in ship wakes, Journal of the Acoustical Society of America, 130, 5, 3431-3437.
  • 44. Leighton T.G., Meers S.D., White P.R. (2004a), Propagation through nonlinear time-dependent bubble clouds, and the estimation of bubble populations from measured acoustic characteristics, Proceedings of the Royal Society A, 460, 2049, 2521-2550.
  • 45. Leighton T.G., Ramble D.G., Phelps A.D. (1997), The detection of tethered and rising bubbles using multiple acoustic techniques, Journal of the Acoustical Society of America, 101, 5, 2626-2635.
  • 46. Leighton T.G., Richards S.D., White P.R. (2004b), Trapped, within a ‘wall of sound’: A possible mechanism for the bubble nets of humpback whales, Acoustics Bulletin, 29, 24-29.
  • 47. Leighton T.G., Robb G.B.N. (2008), Preliminary mapping of void fractions and sound speeds in gassy marine sediments, J. Acoust. Soc. Am., 124, 5, EL313- EL320 (doi: 10.1121/1.2993744).
  • 48. Leighton T.G., White P.R. (2012), Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions, Proceedings of the Royal Society London A, 468, 485-510 (doi: 10.1098/rspa.2011.0221).
  • 49. Lyons A.P., Duncan M.E., Anderson A.L., Hawkins J.A. (1996), Predictions of the acoustic scattering response of free-methane bubbles in muddy sediments, J. Acoust. Soc. Am., 99, 163-172.
  • 50. MARTEN K., SHARIFF K., PSARAKOS S., WHITE D.J. (1995), Ring bubbles of dolphins, Scientific American, 275, 83-87.
  • 51. McGinnis D.F., Greinert J., Artemov Y., BeauBIEN S.E., Wuest A. (2006), Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?, J. Geophysical Research, 111, C09007 (doi: 10.1029/2005JC003183).
  • 52. McLaughlan J., Rivens I., Leighton T.G., ter Haar G. (2010), A study of bubble activity generated in ex-vivo tissue by high intensity focused ultrasound (HIFU), Ultrasound in Medicine and Biology, 36, 8, 1327-1344.
  • 53. Offin D.G., Birkin P.R., Leighton T.G. (2014), An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment, Phys. Chem. Chem. Phys., 16, 4982-4989 (doi: 10.1039/C3CP55088E).
  • 54. Parks S.E., Clark C.W., Tyack P.L. (2007), Short- and long-term changes in right whale calling behavior: The potential effects of noise on acoustic communicatiom, J. Acoust. Soc. Am., 122, 3725-3731 (doi: 10.1121/1.2799904).
  • 55. Phelps A.D., Leighton T.G. (1998), Oceanic bubble population measurements using a buoy-deployed combination frequency technique, IEEE Journal of Oceanic Engineering, 23, 4, 400-410.
  • 56. Read A.J., Waples D.M., Urian K.W., Swan- NER D. (2003), Fine-scale behaviour of bottlenose dolphins around gillnets, Proc. R. Soc. Lond. B, 270, S90- S92 (doi: 10.1098/rsbl.2003.0021).
  • 57. Richards S.D., Leighton T.G. (2001), Acoustic sensor performance in coastal waters: solid suspensions a,n,d, bubbles, [in:] “Acoustical Oceanography”, Leighton T.G., Heald G.J., Griffiths H., Griffiths G. [Eds.], Proceedings of the Institute of Acoustics, 23, 2, 399-406 (ISBN 1901656349).
  • 58. Richards S.D., Leighton T.G., Brown N.R. (2003), Visco-inertial absorption in dilute suspensions of irregular particles, Proc. R. Soc. Lond. A, 459, 2038, 2153-67.
  • 59. Sharpe F.A., Dill L.M. (1997), The behaviour of Pacific herring schools in response to artificial humpback whale bubbles, Canadian Journal of Zoology-Revue Canadienne de Zoologie, 75, 725-730.
  • 60. Skumiel a., Józefczak a., Heller K., Hor- NOWSKI T., Wielgusz K. (2013), Investigation of ultrasonic emulsifying processes of a linseed oil and water mixture, Archives of Acoustics, 38, 3, 297-301 (doi: 10.2478/aoa-2013-0036).
  • 61. Szantyr J.A., Koronowicz T. (2006), Hydroacoustic activity of the ship propeller operation, Archives of Acoustics, 31, 4, 481-487.
  • 62. Tegowski J., Klusek Z., Jaromir J. (2006), Nonlinear acoustical methods in the detection of gassy sediments, [in:] Acoustic Sensing Techniques for the Shallow Water Environment, A. Caiti, N.R. Chapman, J.-P. Herman, S.M. Jesus [Eds.], Springer, Berlin, pp. 125-136.
  • 63. Theunissen A., Habershon-Butche D. (2008), National Geographic, Humpbacks: Cracking the Code, Television documentary.
  • 64. Thorpe S. (1982), On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer, Philos. Trans. R. Soc. London A, 304, 155-210.
  • 65. Vagle S., McNeil C., Steiner N. (2010), Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen, J. Geophysical Research, 115, C12054 (doi: 10.1029/2009JC005990).
  • 66. Valsecchi E., Hale P., Corkeron P., Amos W. (2002), Social structure in migrating humpback whales (Megaptera novaeangliae), Molecular Ecology, 11, 507518.
  • 67. Williams H. (1988), Whale Nation, Jonathan Cape, London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f894c62d-f860-4380-bdac-f4ac60c20794
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.