PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Three Insensitive Energetic Co-crystals of 1-Nitronaphthalene, with 2,4,6-Trinitrotoluene (TNT), 2,4,6-Trinitrophenol (Picric Acid) and D-Mannitol Hexanitrate (MHN)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Co-crystallization is proposed as an effective method to alter the physicochemical properties of energetic materials, e.g. density, sensitivity and solubility. As reported in this paper, it was found that 1-nitronaphthalene could form cocrystals with TNT, picric acid and MHN in a 1:1 molecular ratio. The sensitivity and thermal stability of the 1-nitronaphthalene co-crystals was greatly improved compared with that of pure TNT, picric acid and MHN. In addition, the melting points of TNT, picric acid and MHN were lowered through co-crystallization with 1-nitronaphthalene. The electrostatic potential surface of 1-nitronaphthalene, calculated by the DFT method, showed that the electron-rich 1-nitronaphthalene has a tendency to be a proton donor and to co-crystallize with other energetic materials. The structures of the co-crystals of 1-nitronaphthalene with TNT and picric acid were characterized by single crystal X-ray diffraction (SXRD). The 1-nitronaphthalene/MHN co-crystal was studied by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and FTIR.
Rocznik
Strony
47--62
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Nanjing University of Science & Technology, Nanjing 210094, China
autor
  • Nanjing University of Science & Technology, Nanjing 210094, China
autor
  • Nanjing University of Science & Technology, Nanjing 210094, China
autor
  • Nanjing University of Science & Technology, Nanjing 210094, China
autor
  • Nanjing University of Science & Technology, Nanjing 210094, China
Bibliografia
  • [1] Eshtiagh-Hosseini H., Aghabozorg H., Mirzaei M., Beyramabadi S.A., Eshghi H., Morsali A., Shokrollahi A., Aghaei R., Hydrothermal Synthesis, Experimental and Theoretical Characterization of a Novel Cocrystal Compound in the 2:1 Stoichiometric Ratio Containing 6-Methyluracil and Dipicolinic Acid, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2011, 78(5), 1392-1396.
  • [2] Buanz A.B.M., Parkinson G.N., Gaisford S., Characterization of Carbamazepine-Nicatinamide Cocrystal Polymorphs with Rapid Heating DSC and XRPD, Cryst. Growth Des., 2011, 11(4), 1177-1181.
  • [3] Sanphui P., Kumar S.S., Nangia A., Pharmaceutical Cocrystals of Niclosamide, Cryst. Growth Des., 2012, 12(9), 4588-4599.
  • [4] Bolton O., Simke L.R., Pagoria P.F., Matzger A.J., High Power Explosive with Good Sensitivity: a 2:1 Cocrystal of CL-20: HMX, Cryst. Growth Des., 2012, 12(9), 4311-4314.
  • [5] Landenberger K.B., Matzger A.J., Cocrystal Engineering of a Prototype Energetic Material: Supramolecular Chemistry of 2,4,6-Trinitrotoluene, Cryst. Growth Des., 2010, 10(12), 5341-5347.
  • [6] Landenberger K.B., Matzger A.J.,Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX), Cryst. Growth Des., 2012, 12(7), 3603-3609.
  • [7] Shen J.P., Duan X.H., Luo Q.P., Zhou Y., Bao Q., Ma Y.J., Pei C.H., Preparation and Characterization of a Novel Cocrystal Explosive, Cryst. Growth Des., 2011, 11(5), 1759-1765.
  • [8] Bolton O., Matzger A.J., Improved Stability and Smart-material Functionality Realized in an Energetic Cocrystal, Angew. Chem. Int. Ed. Engl., 2011, 50(38), 8960-8963.
  • [9] Yang Z.W., Li H.Z., Zhou X.Q., Zhang C.Y., Huang H., Li J.S, Nie F.D., Characterization and Properties of a Novel Energetic–Energetic Cocrystal Explosive Composed of HNIW and BTF, Cryst. Growth Des., 2012, 12(11), 5155-5158.
  • [10] Ribeiro da Silva M.A.V., Amaral L.M.P.F., Santos A.F.L.O.M., Gomes J.R.B.J., Thermochemistry of Nitronaphthalenes and Nitroanthracenes, Chem. Thermodyn., 2006, 38(6), 748-755.
  • [11] Swift J.A., Pivovar A.M., Reynolds A.M., Ward M.D., Template-Directed Architectural Isomerism of Open Molecular Frameworks: Engineering of Crystalline Clathrates, J. Am. Chem. Soc., 1998, 120, 5887.
  • [12] Jennifer A.S., Michael D.W., Cooperative Polar Ordering of Acentric Guest Molecules in Topologically Controlled Host Frameworks, Chem. Mater., 2000, 12(6), 1501-1505.
  • [13] Zhan T.R., The Synthesis and Bioactivities of Series Derivatives from D-mannitol (in Chinese), Graduate University of Chinese Academy of Sciences, 2004, 38-41.
  • [14] Li G.A., Miao J.H., Zhang X.P., Simple and Efficient Synthesis of 1-Nitronaphthalene (in Chinese), Journal of Henan Normal University (Natural Science), 2009, 37(5), 158-159.
  • [15] Sheldrick G.M., A Short History of SHELX, Acta Cryst., 2008, A64, 112-122.
  • [16] Wild R., von Collani E., Modelling of Explosives Sensitivity, Part 1: The Bruceton Method, in: Economic Quality Control, Vol. 17, Heldermann Verlag, Berlin, 2002, pp. 113-122.
  • [17] Evers J., Klapötke T.M., Mayer P., Oehlinger G., Welch J., α- and β-FOX-7, Polymorphs of a High Energy Density Material, Studied by X-ray Single Crystal and Powder Investigations in the Temperature Range from 200 to 423 K, Inorg. Chem., 2006, 45(13), 4996-5007.
  • [18] Cady H.H., Larson A.C., The Crystal Structure of 1,3,5-Triamino-2,4,6-trinitrobenzene, Acta Cryst., 1965, 18(3), 485-496.
  • [19] Kamlet M.J., Jacobs S.J., Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of CxHxNxO Explosives, J. Chem. Phys., 1968, 48(1), 23-35.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8913f95-b874-43e0-a801-ac7de4e07f59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.