Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, the effect of heat treatment conditions on the microstructure and mechanical properties of an American Petroleum Institute (API) X80 steel with a low carbon content of ~0.02% wt., destined for the manufacture of pipelines and pipeline transmission systems by welding, was investigated. Samples were heat treated under different conditions and then were characterized by scanning electron microscopy (SEM), orientation image microscopy (OIM), and electron backscattered diffraction (EBSD). The results showed that when the steel is fastly cooled from the austenitic field (990°C), the mechanical properties increase significantly [ultimate tensile strength (UTS) >1,100 MPa, yield strength (YS) 900 MPa, and elongation 27%] due to the high percentage of martensite (M) present in the microstructure (95%). In contrast, when the cooling rate decreases and the treatment conditions remain at/or above the bainitic/martensitic transformation (from 990°C to 600°C and 450°C), the mechanical properties are decreased by almost 50% because of the decrease in the percentage of martensite (18%). However, the percentage of elongation increases significantly (38%) due to the presence of other micro-constituents resulting from the phase transformation. On the other hand, the best combination of mechanical properties (UTS above 800 MPa and YS between 610 MPa and 720 MPa) was obtained when the steel acquired a dual-phase microstructure [(martensite/austenite)-(ferrite/martensite)] since the amount of martensite is conserved between 45% and 82%, in combination with the other micro-constituent present in the steel that allows us to achieve elongation percentages close to 30%.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
103--112
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- TecNM/I.T. Morelia, Tecnológico 1500 Av., 58120, Morelia, Michoacán, México
autor
- TecNM/I.T. Morelia, Tecnológico 1500 Av., 58120, Morelia, Michoacán, México
autor
- TecNM/I.T. Morelia, Tecnológico 1500 Av., 58120, Morelia, Michoacán, México
- TecNM/I.T. Morelia, Tecnológico 1500 Av., 58120, Morelia, Michoacán, México
- CÁTEDRAS-CONACYT, Insurgentes Sur 1528 Av., 03940, CDMX, México
autor
- TecNM/I.T. Morelia, Tecnológico 1500 Av., 58120, Morelia, Michoacán, México
autor
- AHMSA, Juárez Av., 25770, Monclova, Coahuila, México
Bibliografia
- [1] Farhat H, Oguocha INA, Yannacopoulos S. Effect of welding speed on weld quality and microstructure of tandem submerged arc welded X80 pipeline steel. In: Materials Science and Technology, 2009 Conference and Exhibition, Pittsburg, 2009, p. 2457.
- [2] Nishioka K, Ichikawa K. Progress in thermomechanical control of steel plates and their commercialization. Sci Technol Adv Mater. 2012; https://doi.org/10.1088/14686996/13/2/023001
- [3] Byoungchul H, Young MK, Sunghak L, Nack K. Correlation of rolling condition, microstructure, and low temperature toughness of X70 pipeline steels. J Metall Mater Trans A. 2005; https://doi.org/10.1007/s11661-005-0043-1
- [4] Rodrigues PCM, Pereloma EV, Santos DB. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling. Mater Sci Eng A. 2000; https://doi.org/10.1016/S0921-5093(99)00795-9
- [5] Kong J, Zhen L, Guo B, Li P. Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel. Mater Design. 2004; https://doi.org/10.1016/j.matdes.2004.03.009
- [6] Pouraliakbara H, Khalajb G, Jandaghia MR, Khalajb MJ. Study on the correlation of toughness with chemical composition and tensile test results in microalloyed API pipeline steels. J Min Metall Sect B Metall B. 2015; https://doi.org/10.2298/JMMB140525025P
- [7] Faizabadi MJ, Khalaj G, Pouraliakbar H, Jandaghi MR. Prediction of toughness by using chemical composition and tensile properties in microalloyed line pipe steels. Neural Comput Appl. 2014; https://doi.org/10.1007/s00521-014-1687-9
- [8] Wang X, Xiao F-R, Fu Y-H, Chen X-W, Liao B. Material development for grade X80 heavy-wall hot inductions bends. Mater Sci Eng A. 2011; https://doi.org/10.1016/j.msea.2011.10.017
- [9] Goldenstein H, Gorni A, González Ramírez MF, Landgraf FJG. Caracterización y Análisis de la Evolución del Microconstituyente MA en Aceros Microaleados para Tubo API X80 Tratado Térmicamente. In: IX Congreso Iberoamericano de Ingeniería Mecánica, São Paulo, 2009; 60.
- [10] Huda N, Midawi ARH, Gianetto J, Lazor R, Gerlich AP. Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels. Mater Sci Eng. 2016; https://doi.org/10.1016/j.msea.2016.03.095
- [11] Niu J, Qi L-H, Liu Y-L, Ma L, Feng Y-R, Zang J-X. Tempering microstructure and mechanicals properties of pipeline steel X80. Trans Nonferr Met. Soc China. 2009; https://doi.org/10.1016/S1003-6326(10)60111-2
- [12] Liu Y-J, Li Y-M, Huang B-Y. Influence on austenitizing temperature on apparent morphologies of asquenched microstructures of steels. J Cent South Univ Technol, 2006; https://doi.org/10.1007/s11771-006-0142-1
- [13] Bhadeshia H. Steels: microstructure and properties. 3rd ed. New York: Elsevier; 2006.
- [14] Zhao J, Hu W, Wang X, Kang J, Cao Y, Yuan G, Di H, Misra RDK. A novel thermo-mechanical controlled processing for large-thickness microalloyed 560 MPa (X80) pipeline strip under ultra-fast colling. Mater Sci Eng A. 2016; https://doi.org/10.1016/j.msea. 2016.07.089
- [15] López Granados NM. Estudio de las texturas de trans formación de fase en aceros laminados en caliente para aplicaciones automotrices. Doctoral thesis, México, 2015, p. 58.
- [16] Han SY, Shin SY, Lee S, Kim NJ, Bae J-H, Kim K. Effects of Cooling Conditions on Tensile and Charpy Impact Properties of API X80 Linepipe Steels. Metall Mater Trans A. 2010; https://doi.org/10.1007/s11661-009-0135-4
- [17] Sun XJ, Yuan SF, Xie ZJ, Dong LL, Misra RDK. Microstructure-property relationship in a high strengthhigh toughness combination ultra-heavy gauge offshore plate steel: The significance of multiphase microstructure. Mater Sci Eng A. 2017; https://doi.org/10.1016/j.msea.2017.02.058
- [18] Tottenn GE. Steel heat treatment: metallurgy and technologies. 2nd ed. Oregon: CRC Press; 2007.
- [19] Schwarts AJ, Kumar M, Adams BL, Field DP. Electron backscattering diffraction in material science. 2nd ed. New York: Springer; 2000.
- [20] Tarasiuk J, Gerber P, Bacroix B. Estimation of recrystallized volume fraction from EBSD data. Act Mater. 2002; https://doi.org/10.1016/S1359-6454(02)00005-8
- [21] Humphreys FJ. Review grain and subgrain characterization by electron backscatter diffraction. J Mater Sci. 2001; https://doi.org/10.1023/A:1017973432592
- [22] Lassen K. Automatic high-precision measurements of the location and width of Kikuchi bands in electron backscatter diffraction patterns. J Microsc.1998; https://doi.org/10.1046/j.1365-2818.1998.00330.x
- [23] Wilson AW, Spanos G. Application of orientation imaging microscopy to study phase transformations in steels. Mater Charact. 2001; https://doi.org/10.1016/S1044-5803(01)00140-1
- [24] Wu J, Wray PJ, Garcia CI, Hua M, DeArdo AJ. Image quality analysis: A new method of characterizing microstructures. ISIJ Int. 2005; https://doi.org/10.2355/isijinternational.45.254
- [25] Lopez Granados NM, Salinas Rodriguez A. EBSD Investigation on Effect of Cooling Rate on Microstructure and Transformation Textures of High Strength Hotrolled Steel Plates. J Iron Steel Res Int. 2016; https://doi.org/10.1016/S1006-706X(16)30043-7
- [26] Barella S, Venturini R, Mapelli C. Crystallographic texture and mechanical properties in high martensitic dual phase steels In: The 1st. International Conference Super- High Strength Steels, Italy, 2005.
- [27] Wilson AW, Madison JD, Spanos G, Determining phase volume fraction in steels by electron backscattered diffraction. Scr Mater. 2001; https://doi.org/10.1016/S1359-6462(01)01137-X
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f88f3fa6-853e-44a9-b38c-f28dfde5c3c6