PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on the shear strength of reinforced concrete beams cast with Lava lightweight aggregates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates experimentally the shear strength behavior of reinforced concrete (RC) beams cast with Lava lightweight aggregates as a replacement of normal coarse aggregates. A total of 24 shear deficient RC beams were fabricated and cast with normal (NWC) and lightweight (LWC) concrete and tested under three-point bending after 28 and 56 days. The variables of the experimental program include type of aggregate, concrete compressive strength, and beam size. The experimental results include load–deflection response curves along with failure mode for each beam specimen. The experimental result showed that all beams failed in a similar fashion, due to diagonal tension shear crack. However, a larger number of cracks with less spacing occurred in the LWC beams as compared to NWC specimens. Based on the experimental results, it can be also concluded that LWC specimens tested after 56 days achieved comparable shear strength results to that of NWC beams. In addition, the strength reduction factor (l) for LWC specimens was in the range of 0.69–0.98. The concrete shear strength (Vc) was also predicted using different shear design provisions and the results has shown that Eurocode 2 provisions yielded the lowest C. O.V. of 2.3 and 10.2% for NWC and LWC specimens, respectively.
Rocznik
Strony
981--996
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab., wykr.
Twórcy
autor
  • American University of Sharjah, Department of Civil Engineering, P.O. Box 26666, Sharjah, United Arab Emirates
  • American University of Sharjah, Department of Civil Engineering, P.O. Box 26666, Sharjah, United Arab Emirates
  • American University of Sharjah, Material Science and Engineering Research Institute (MSERI), P.O. Box 26666, Sharjah, United Arab Emirates
  • American University of Sharjah, Department of Civil Engineering, P.O. Box 26666, Sharjah, United Arab Emirates
  • American University of Sharjah, Material Science and Engineering Research Institute (MSERI), P.O. Box 26666, Sharjah, United Arab Emirates
  • American University of Sharjah, Department of Civil Engineering, P.O. Box 26666, Sharjah, United Arab Emirates
  • American University of Sharjah, Department of Civil Engineering, P.O. Box 26666, Sharjah, United Arab Emirates
autor
  • American University of Sharjah, Department of Civil Engineering, P.O. Box 26666, Sharjah, United Arab Emirates
  • American University of Sharjah, Department of Civil Engineering, P.O. Box 26666, Sharjah, United Arab Emirates
Bibliografia
  • [1] P. Shafgh, H.B. Mahmud, M.Z.B. Jumaat, R. Ahmmad, S. Bahri, Structural lightweight aggregate concrete using two types of waste from the palm oil industry as aggregate, J. Clean. Prod. 80 (2014) 187–196.
  • [2] M. Limbachiya, M.S. Meddah, Y. Ouchagour, Performance of portland/silica fume cement concrete produced with recycled concrete aggregate, ACI Mater. J. 109 (1) (2012) 91–100.
  • [3] C. Tang, T. Yen, H. Chen, Shear behavior of reinforced concrete beams made with sedimentary light weight aggregate without shear reinforcement, J. Mater. Civ. Eng. 21 (12) (2009) 730–739.
  • [4] A.U. Johnson, M.Z. Jumaat, H. Mahmud, M.M. Fayyadh, Shear behaviour of reinforced palm kernel shell concrete beams, Constr. Build. Mater. 25 (2011) 2918–2927.
  • [5] R.A. Hawileh, J.A. Abdalla, F. Fakherdine, S.A. Poya, Performance of reinforced concrete beams cast with different percentages of GGBS replacement to cement, Arch. Civ. Mech. Eng. 17 (2017) 511–519.
  • [6] K.H. Yang, S. Jae, C. Byong, T.L. Eun, Effect of aggregate size on shear behavior of lightweight concrete continuous slender beams, ACI Mater. J. 108 (5) (2011) 501–509.
  • [7] K.H. Yang, A.F. Ashour, Modification factor for shear capacity of lightweight concrete beams, ACI Struct. J. 112 (4) (2015) 485–492.
  • [8] J.A. Ramirez, J. Olek, B.J. Malone, Shear strength of lightweight reinforced concrete beams, ACI Spec. Publ. 218 (218) (2004) 69–90.
  • [9] E. Yasar, D.A. Cengiz, K. Alaettin, G. Hasan, Strength properties of lightweight concrete made with basaltic pumice and fly ash, Mater. Lett. 57 (15) (2003) 2267–2270.
  • [10] S.M. Bashar, W.L. Foo, K.M.A. Hossain, M. Abdullahi, Shear strength of palm oil clinker concrete beams, Mater. Des. 46 (2013) 270–276.
  • [11] R.M. Korol, K.S. Sivakumaran, Energy absorption potential of light weight concrete floors, Can. J. Civ. Eng. 39 (11) (2012) 1193–1201.
  • [12] K. Onoue, T. Hiroki, S. Hendro, Shock-absorbing capability of lightweight concrete utilizing volcanic pumice aggregate, Constr. Build. Mater. 83 (2015) 261–274.
  • [13] M.H. Zhang, O.E. Gjorv, Microstructure of the interfacial zone between lightweight aggregate and cement paste, Cem. Concr. Res. 20 (4) (1990) 610–618.
  • [14] J.A. Bogas, M.G. Gomes, S. Real, Bonding of steel reinforcement in structural expanded clay lightweight aggregate concrete: the influence of failure mechanism and concrete composition, Constr. Build. Mater. 65 (2014) 350–359.
  • [15] K.H. Mo, U.J. Alengaram, P. Visintin, S.H. Goh, M.Z. Jumaat, Influence of lightweight aggregate on the bond properties of concrete with various strength grades, Constr. Build. Mater. 84 (2015) 377–386.
  • [16] M. Pecce, F. Ceroni, F.A. Bibbo, S. Acierno, Steel-concrete bond behaviour of lightweight concrete with expanded polystyrene (EPS), Mater. Struct. 48 (1–2) (2015) 139–152.
  • [17] B. Xu, D.V. Bompa, A.Y. Elghazouli, A.M. Ruiz-Teran, P.J. Stafford, Behaviour of rubberised concrete members in asymmetric shear tests, Constr. Build. Mater. 159 (2018) 361–375.
  • [18] D.V. Bompa, A.Y. Elghazouli, Ultimate shear behaviour of hybrid reinforced concrete beam-to-steel column assemblages, Eng. Struct. 101 (2015) 318–336.
  • [19] S. Campana, M. Fernández Ruiz, A. Anastasi, A. Muttoni, Analysis of shear transfer actions on one-way RC members based on measured cracking pattern and failure kinematics, Mag. Concr. Res. 56 (6) (2013) 386–404.
  • [20] M.Z. Jumaat, A.U. Johnson, H. Mahmud, Shear behaviour of oil palm shell reinforced concrete beams, Mater. Des. 30 (2009) 2227–2236.
  • [21] C.H. Kim, S.J. Heui, Concrete shear strength of normal and lightweight concrete beams reinforced with FRP bars, J. Compos. Constr. 18 (2) (2014) 122–131.
  • [22] ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentry (318R-14), American Concrete Institute, Farmington Hills, MI, 2005.
  • [23] Canadian Standards Association (CSA), Design of Concrete Structures. CAN/CSA 2004-A23.3-04, Rexdale, Ontario, 2004.
  • [24] R.J. Frosch, Contribution of concrete to shear resistance, ACI Struct. J. 99 (4) (2002) 427–433.
  • [25] A.K. Tureyen, R.J. Frosch, Shear tests of FRP-reinforced concrete beams without stirrups, ACI Struct. J. 99 (4) (2002) 427–433.
  • [26] A. Laskar, T.C. Hsu, Y.L. Mo, Shear strengths of prestressed concrete beams part 1: experiments and shear design equations, ACI Struct. J. 107 (3) (2010) 330–339.
  • [27] T.C. Hsu, A. Laskar, Y.L. Mo, Shear strengths of prestressed concrete beams part 2: comparisons with ACI and AASHTO provisions, ACI Struct. J. 107 (3) (2010) 340–345.
  • [28] EN 1992-1-1 (2004) (English). Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC].
  • [29] Fib, CEB/FIP Model Code 2010 for Concrete Structures, Comité Euro-International du Béton (CEB), Lausanne, Switzerland, 2012.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f88ec6e9-55ec-41ec-bf65-d492afa6317c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.