PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic performance verifcation of the Rędziński Bridge using portable camera‑based vibration monitoring systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The assessment of dynamic performance of large-scale bridges typically relies on the deployment of wired instrumentation systems requiring direct contact with the tested structures. This can obstruct their operation and create unnecessary risks to the involved personnel and equipment. These problems can be readily avoided by using non-contact instrumentation systems. However, the cost of of-the-shelf commercial products often prevents their wide adoption in engineering practice. To this end, the dynamic performance of the biggest one-pylon cable-stayed bridge in Poland is investigated based on data from a consumer-grade digital camera and open access image-processing algorithms. The quality of these data is benchmarked against data obtained from conventional wired accelerometers and a high-end commercial optical motion capture system. Operational modal analysis is conducted to extract modal damping, which has a potential to serve as an indicator of structural health. The dynamic properties of the bridge are evaluated against the results obtained during a proof loading exercise undertaken prior to the bridge opening. It is shown that a vibration monitoring system based on consumer-grade digital camera can indeed provide an economically viable alternative to monitoring the complex time-evolving dynamic behaviour patterns of large-scale bridges.
Rocznik
Strony
art. no. e40, 2023
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Department of Roads, Bridges, Railways and Airports, Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
  • School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9DY, UK
  • School of Engineering, University of Leicester, University Road, Leicester LE1 7RH, UK
  • Faculty of Engineering Science, University College London, Gower Street, London WC1E 6BT, UK
  • Department of Roads, Bridges, Railways and Airports, Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Roads, Bridges, Railways and Airports, Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Department of Roads, Bridges, Railways and Airports, Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Department of Roads, Bridges, Railways and Airports, Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Roads, Bridges, Railways and Airports, Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Ye XW, Dong CZ, Liu T. A review of machine vision-based structural health monitoring: methodologies and applications. J Sens. 2016. https://doi.org/10.1155/2016/7103039.
  • 2. Baqersad J, Poozesh P, Niezrecki C, Avitabile P. Photogrammetry and optical methods in structural dynamics – a review. Mech Syst Signal Process. 2017;86:17-34. https://doi.org/10.1016/j.ymssp. 2016.02.011.
  • 3. Feng D, Feng MQ. Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection - a review. Eng Struct. 2018;156:105-17. https://doi.org/10.1016/j. Engstruct.2017.11.018.
  • 4. Xu Y, Brownjohn JMW. Review of machine-vision based methodologies for displacement measurement in civil structures. J Civ Struct Heal Monit. 2018;8(1):91-110. https://doi.org/10.1007/ s13349-017-0261-4.
  • 5. Spencer BF, Hoskere V, Narazaki Y. Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering. 2019;5(2):199-222. https://doi.org/10.1016/j.eng.2018.11.030.
  • 6. Dong CZ, Catbas FN. A review of computer vision-based structural health monitoring at local and global levels. Struct Health. 2020. https://doi.org/10.1177/1475921720935585.
  • 7. Zona A. Vision-based vibration monitoring of structures and infrastructures: an overview of recent applications. Infrastructures. 2021;6(1):1-22. https://doi.org/10.3390/infrastructures 6010004.
  • 8. Kalybek M, Bocian M, Nikitas N. Performance of optical structural vibration monitoring systems in experimental modal analysis. Sensors. 2021;21(4):1239. https://doi.org/10.3390/s21041239.
  • 9. Kalybek M, Bocian M, Pakos W, Grosel J, Nikitas N. Performance of camera-based vibration monitoring systems in input-output modal identifcation using shaker excitation. Remote Sens. 2021;13(17):1-25. https://doi.org/10.3390/rs13173471.
  • 10. Stephen GA, Brownjohn JMW, Taylor CA. Measurements of static and dynamic displacement from visual monitoring of the Humber bridge. Eng Struct. 1993;15(3):197-208. https://doi.org/10.1016/ 0141-0296(93)90054-8.
  • 11. Brownjohn JMW, Xu Y, Hester D. Vision-based bridge deformation monitoring. Front Built Environ. 2017. https://doi.org/10. 3389/fbuil.2017.00023.
  • 12. Macdonald JHG, Dagless EL, Thomas BT, Taylor CA. Dynamic measurements of the second severn crossing. Proc Inst Civ Eng Transp. 1997;123(4):241-8. https://doi.org/10.1680/itran.1997.29978.
  • 13. Wahbeh AM, Cafrey JP, Masri SF. A vision-based approach for the direct measurement of displacements in vibrating systems. Smart Mater Struct. 2003;12(5):785-94. https://doi.org/10.1088/ 0964-1726/12/5/016.
  • 14. Feng D, Feng MQ. Experimental validation of cost-effective vision-based structural health monitoring. Mech Syst Signal Process. 2017;88:199-211. https://doi.org/10.1016/j.ymssp.2016.11.021.
  • 15. Feng D, Feng MQ. Computer vision for structural dynamics and health monitoring. Newyark: John Wiley & Sons and ASME Press; 2020.
  • 16. Caetano E, Silva S, Bateira J. A vision system for vibration monitoring of civil engineering structures. Exp Tech. 2011;35(4):74-82. https://doi.org/10.1111/j.1747-1567.2010.00653.x.
  • 17. Kim S-W, Kim N-S. Dynamic characteristics of suspension bridge hanger cables using digital image processing. NDT E Int. 2013;59:25-33. https://doi.org/10.1016/j.ndteint.2013.05.002.
  • 18. Kim S-W, Jeon B-G, Kim N-S, Park J-C. Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge. Struct Heal Monit. 2013;12(5-6):440-56. https://doi.org/10.1177/1475921713500513.
  • 19. Ye XW, Ni YQ, Wai TT, Wong KY, Zhang XM, Xu F. A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification. Smart Struct Syst. 2013;12(3-4):363-79. https://doi.org/10.12989/sss.2013.12.3_4.363.
  • 20. Chen C-C, Wu W-H, Tseng H-Z, Chen C-H, Lai G. Application of digital photogrammetry techniques in identifying the mode shape ratios of stay cables with multiple camcorders. Measurement. 2015;75:134-46. https://doi.org/10.1016/j.measurement. 2015.07.037.
  • 21. Hester D, Brownjohn JMW, Bocian M, Xu Y. Low cost bridge load test: calculating bridge displacement from acceleration for load assessment calculations. Eng Struct. 2017;143:358-74. https://doi.org/10.1016/j.engstruct.2017.04.021.
  • 22. M. Kużawa, J. Bień, P. Rawa, T. Kamiński, and J. Zwolski, “Static and dynamic load tests of cable-stayed bridge over Odra River in Wrocław,” in 6th International Conference on Bridge Maintenance, Safety and Management (IABMAS), Stresa, Italy, 2012, pp. 3344-3351.
  • 23. J. Bień, “Uszkodzenia i diagnostyka obiektów mostowych (Damage and diagnosis of bridge structures),” Wydawnictwa Komunikacji i Łączności, 2010.
  • 24. Cao MS, Sha GG, Gao YF, Ostachowicz W. Structural damage identifcation using damping: a compendium of uses and features. Smart Mater Struct. 2017. https://doi.org/10.1088/1361-665X/aa550a.
  • 25. Frizzarin M, Feng MQ, Franchetti P, Soyoz S, Modena C. Damage detection based on damping analysis of ambient vibration data. Struct Control Heal Monit. 2008. https://doi.org/10.1002/stc.296.
  • 26. Bień J, Kużawa M, Kamiński T. Validation of numerical models of concrete box bridges based on load test results. Arch Civil Mech Eng. 2015. https://doi.org/10.1016/j.acme.2015.05.007.
  • 27. Biliszczuk J, Barcik W, Onysyk J, Szczepański J, Tokiewicz R, Tukendorf A, Tukendorf K. Cable-stayed bridge over the Odra River in Wroclaw, Poland. IABSE Congr Seoul 2012 Innov Infrastruct Towar Hum Urban. 2012;18:819-26. https://doi.org/10.2749/222137912805111221.
  • 28. Biliszczuk J, Barcik W, Onysyk J, Toczkiewicz R, Tukendorf A, Tukendorf K. Rȩdziński bridge in wrocław - the largest concrete cable-stayed bridge in Poland. Struct Eng Int J Int Assoc Bridg Struct Eng. 2014;24(2):285-92. https://doi.org/10.2749/101686614X13830790993087.
  • 29. M. Kużawa, J. Bień, P. Rawa, T. Kamiński, and J. Zwolski, “Badania pod próbnymi obciążeniami prawego mostu głównego MA-21’II przez rzekę Odrę w ciągu Autostradowej Obwodnicy Wrocławia A-8 (Proof loading tests of the right main bridge MA21’II over the Odra River along the ring road A-8 in Wrocław),” Ser. SPR nr 14, 2011.
  • 30. Anon., “Imetrum - Measuring The Industrial World,” 2022. Available: https://www.imetrum.com/, Accessed: 1/12/2021.
  • 31. Bradski G, Kaehler A. Learning OpenCV. CA: O’Reilly Media Inc; 2008.
  • 32. Giachetti A. Matching techniques to compute image motion. Image Vision Comput. 2000;18(3):247-60. https://doi.org/10.1016/S0262-8856(99)00018-9.
  • 33. Pan B, Qian K, Xie H, Asundi A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol. 2009;20: 062001. https://doi.org/10.1088/0957-0233/20/6/062001.
  • 34. Evangelidis GD, Psarakis EZ. Parametric image alignment using enhanced correlation coefcient maximization. IEEE Trans Pattern Anal Mach Intell. 2008;30(10):1858-65. https://doi.org/10.1109/TPAMI.2008.113.
  • 35. J. Shi and C. Tomasi, “Good features to track,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994, pp. 593-600, doi: https://doi.org/10.1109/cvpr.1994.323794.
  • 36. B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in Proceedings of the 7th International Joint Conference on Artifcial Intelligence, 1981, pp. 121-130.
  • 37. Brincker R, Zhang L, Andersen P. Modal identifcation of output-only systems using frequency domain decomposition. Smart Mater Struct. 2001;10(3):441-5. https://doi.org/10.1088/0964-1726/10/3/303.
  • 38. M. Goursat and L. Mevel, “Algorithms for covariance subspace identifcation: a choice of efective implementations,” 27th International Modal Analysis Conference (IMAC-XXVII), February 2009, Orlando, United States, 2009.
  • 39. E. ToolBox, “Illuminance - recommended light level,” 2004. Available: https://www.engineeringtoolbox.com/light-levelrooms-d_708.html, Accessed: 15/7/2021.
  • 40. Brownjohn JMW. Estimation of damping in suspension bridges. Proc Inst Civ Eng Struct Build. 1994;104(4):401-15. https://doi. org/10.1680/istbu.1994.27199.
  • 41. Hwang D, Kim S, Kim H-K. Long-term damping characteristics of twin cable-stayed bridge under environmental and operational variations. J Bridg Eng. 2021;26(9):04021062. https://doi.org/10.1061/(asce)be.1943-5592.0001761.
  • 42. Li H, Li S, Ou J, Li H. Modal identifcation of bridges under varying environmental conditions : temperature and wind effects. Struct Control Hlth. 2010;17(5, 2009):495-512. https://doi.org/10.1002/stc.319.
  • 43. Xia Y, Chen B, Weng S. Temperature effect on vibration properties of civil structures : a literature review and case studies. J Civil Struct Health Monit. 2012;2:29-46. https://doi.org/10.1007/s13349-011-0015-7.
  • 44. J. Biliszczuk, M. Hildebrand, and M. Teichgraeber, “Temperature distribution in different bridges types based on data from SHM systems,” in IABSE Congress Ghent - Structural Engineering for Future Societal Needs, 2021, pp. 540-548.
  • 45. Van Nimmen K, Van Hauwermeiren J, Van den Broeck P. Eeklo footbridge: benchmark dataset on pedestrian-induced vibrations. J Bridg Eng. 2021;26(7):1-17. https://doi.org/10.1061/(asce)be.1943-5592.0001707.
  • 46. Magalhães F, Cunha Á, Caetano E, Brincker R. Damping estimation using free decays and ambient vibration tests. Mech Syst Signal Process. 2010;24(5):1274-90. https://doi.org/10.1016/j.Ymssp.2009.02.011.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f889df80-d0e2-4ed6-b084-e63049b28523
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.