PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance and mechanism of Carrousel oxidation ditch and water Spinach wetland combined process in treating water hyacinth (Pontederia crassipes) biogas slurry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Owing to its high concentrations of nitrogen and phosphorus, the slurry from water hyacinth (Pontederia crassipes) biogas production cannot be discharged directly without further treatment. To achieve the target of water recycling, a new strategy of combining a Carrousel oxidation ditch with a water spinach wetland was developed in this study for the harmless treatment of Pontederia crassipes biogas slurry. First, the water quality characteristics of the biogas slurry were measured. Then, comprehensive tests of the combined slurry treatment system were carried out to verify pollutant removal performance and mechanism. The results showed that the Carrousel oxidation ditch reduced the inlet pollutant load of the subsequent water spinach wetland. The chemical oxygen demand (COD), and ammonium nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) contents of the average effluent from the combined system were less than 50 mg/L, 1.6 mg/L, 6 mg/L, and 0.5 mg/L, respectively, which means that all met urban sewage treatment standard of Level 1 Grade A (GB18918-2002). Gas chromatography – mass spectrometry analysis showed that the combined system had decreased various types of organic pollutants in the biogas slurry exponentially, efficiently removing alkane pollutants, aromatic hydrocarbons, and heterocyclic compounds. Scanning electron microscopy images revealed very large surface area of the water spinach roots in the wetland, which played important roles in enriching the microorganisms and trapping organic matter. Plant absorption, microbial degradation, and filtration were the primary ways in which the water spinach wetland purified the biogas slurry.
Rocznik
Strony
39--46
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Yancheng Institute of Technology, China
autor
  • Yancheng Institute of Technology, China
autor
  • Yancheng Institute of Technology, China
autor
  •  Xi'an University of Architecture and Technology, China
Bibliografia
  • 1. Appels, L., Lauwers, J., Degrève J., Helsen, L., Lievens, L., Willems, K., Van Impe, L. & Dewil, R. (2011). Anaerobicdigestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews, 15, 9, pp. 4295-4301. DOI:10.1016/j.rser.2011.07.121
  • 2. Ariffin, F. D., Halim, A. A., Hanafiah, M. M., Awang, N., Othman, M. S., Azman, S. A. A. & Bakri, N. S. M. (2019). The effects of african catfish, cltfish, clarias gariepinus pond farm's effluent on water quality of Kesang river in Malacca, Malaysia. Applied ecology and Environmental Research, 17, 2, pp. 1531-1545. DOI:10.15666/aeer/1702_15311545
  • 3. Bergier, T. & Wlodyka-Bergier, A. (2016). Semi-technical scale research on constructed wetland removal of aliphatic hydrocarbons C7-C40 from wastewater from a car service station. Destalnation and Water Treatment, 57, 3, pp. 1534-1542. DOI:10.1080/19443994.2015.1030122
  • 4. Carlini, M., Castellucci, S. & Mennuni, A. (2018). Water hyacinth biomass: Chemical and thermal pre-treatment for energetic utilization in anaerobic digestion process. Energy Procedia, 148, pp. 431-438. DOI:10.1016/j.egypro.2018.08.106
  • 5. Carnaje, N.P., Talagon, R.B., Peralta, J.P., Shah, K. & Paz-Ferreiro, J. (2018). Development and characterisation of charcoal briquettes from water hyacinth (Eichhomia crassipes)-molasses blend. PLOS One, 13, 11. DOI:10.1371/journal.pone.0207135
  • 6. China, S.E.P.A.O. (2004), National standard methods for water and wastewater quality analysis. China Environmental Science Press, Beijing, 2004
  • 7. Das, A., Ghosh, P., Tanmay, P., Ghosh, U., Pati, B.R. & Mondal, K.C. (2016). Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). Biotech, 70, 6, pp. 69-77. DOI:10.1007/s13205-016-0385-y
  • 8. Das, B., Thakur, S., Chaithanya, M.S. &Biswas, P. (2019). Batch investigation of constructed wetland microbial fuel cell with reverse osmosis (RO) concentrate and wastewater mix as substrate. Biomass and Bioenergy, 122, pp. 231-237. DOI:10.1016/j.biombioe.2019.01.017
  • 9. Godin, B., Lamaudière, S., Agneessens, R., Schmit. T., Goffart. J-P., Stilmant, D., Gerin, P.A. & Delcarte, J. (2013). Chemical Composition and Biofuel Potentials of a Wide Diversity of Plant Biomasses. Energy Fuels, 27, 5, pp. 2588-2598. DOI: 10.1021/ef3019244
  • 10. Guragain, Y.N., Coninck, J., Husson, F., Durand, A. & Rakshit, S.K. (2011). Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresource Technology, 102, 6, pp.4416-4424. DOI:10.1016/j.biortech.2010.11.125
  • 11. Jan, V., (2010). Constructed wetlands for wastewater treatment. Water, 2, 3, pp. 530-549. DOI:10.3390/w2030530
  • 12. Jin, P.K., Wang, X.B., Wang, X.C., Hgo, H.H. & Jin, X. (2015). A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch. Bioresource Technology. 198, pp. 23-30. DOI: 10.1016/j.biortech.2015.08.145
  • 13. Li, T.J., Jin, Y., Huang, Y., (2022). Water quality improvement performance of two urban constructed water quality treatment wetland engineering landscaping in Hangzhou, China. Water Science and Technology, 85, 5, pp.1454-1469. DOI:10.2166/wst.2022.063
  • 14. Li, X.L., Zhang, J., Zhang, X., Li, J., Liu, F. & Chen, Y. (2019). Start-up and nitrogen removal performance of CANON and SNAD processes in a pilot-scale oxidation ditch reactor. Process Biochemistry, 84, pp. 134-142. DOI: 10.1016/j.procbio.2019.06.010
  • 15. Li, X-N., Song, H-L., Li W., Lu, X-W. & Nishimura, O. (2010). An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological engineering, 36, 4, pp. 382-390. DOI: 10.1016/j.ecoleng.2009.11.004
  • 16. Liu, F., Sun, L., Wan, J.B., et al. (2020). Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. Journal of Environmental Science, 89, pp. 252-262. DOI:10.1016/j.jes.2019.08.015.
  • 17. Patyal, V., Jaspal, D., Khare, K., (2021). Materials in constructed wetlands for wastewater remediation: A review. Water Environment Reserach, 93,12, pp.2853-2872. DOI:10.1002/wer.1648
  • 18. Ren, N.Q., Li, J.Z., (2004). Biological Technology in the Treatment of Environmental Pollution. Chemical Industry Press, Beijing 2004.
  • 19. Sierra, C.G., Hernández, M.G., Murrieta R. (2022). Alternative uses of water Hyacinth (Pontederia crassipes) from a sustainable perspective: a systematic literature review. Sustainability, 14, 7, pp. 3931. DOI:10.3390/su14073931
  • 20. Steinhoff-Wrześniewska, A., Strzelczyk, M., Helis, M., Paszkiewicz-Jasińska, A., Gruss, Ł., Pulikowski, K. & Skorulski, W. (2022). Identification of catchment areas with nitrogen pollution risk for lowland river water quality. Archives of Environmental Protection, 48, 2, pp. 53-64. DOI: 10.24425/aep.2022.140766.
  • 21. Tuszynska, A., Kolecka, K., Quant, B., (2013). The influence of phosphorus fractions in bottom sediments on phosphate removal in semi-natural systems as the 3rd stage of biological wastewater treatment, Ecological Engineering, 53, pp.321-328. DOI:10.1016/j.ecoleng.2012.12.068
  • 22. Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380, 1, pp. 48-65. DOI: 10.1016/j.scitotenv.2006.09.014
  • 23. Wang, J.., Li, A., Wang, Q., Zhou, Y., Fu, L. &Li, Y. (2010). Assessment of the manganese content of the drinking water source in Yancheng, China, Journal of Hazardous Materials, 182, 1-3, pp.259-65. DOI:10.1016/j.jhazmat.2010.06.023
  • 24. Wu, L., Li, X.N., Song, H.L., (2013). Enhanced removal of organic matter and nitrogen in a vertical-flow constructed wetland with Eisenia foetida, Desalination and water treatment, 51,40-42, pp.7460-7468. DOI: 10.1080/19443994.2013.792140
  • 25. Wu, Y.F., (2013). Characteristics of DOM and Removal of DBPs Precursors across O-3-BAC Integrated Treatment for the Micro-Polluted Raw Water of the Huangpu River, Water, 5, 4, pp.1472-1486. DOI: 10.3390/w5041472
  • 26. Xia, S.B., Liu, J.X., (2004). An innovative integrated oxidation ditch with vertical circle for domestic wastewater treatment, Process Biochemistry. 39, 9, pp. 1111-1117. DOI:10.1016/S0032-9592(03)00216-4
  • 27. Xu, D., Liu, S., Chen, Q. & Ni, J. Xu, D., Liu, S., Chen, Q. & Ni, J. (2017). Microbial community compositions in different functional zones of Carrousel oxidation ditch system for domestic wastewater treatment, AMB Express, 7, 40. DOI:10.1186/s13568-017-0336-y
  • 28. Yang, G., Wang, B., Wang, H., He, Z., Pi, Z., Zhou, J., Liang, T., Chen, M., He, T. & Fu, T. (2022). Removal of organochlorine pesticides and metagenomic analysis by multi-stage constructed wetland treating landfill leachate. Chemosphere, 301, 134761. DOI:10.1016/j.chemosphere.2022.134761
  • 29. Yin, F.F., Guo, H.F., (2022). Influence of additional methanol on both pre- and post-denitrification processes in treating municipal wastewater. Water Science and Technology, 85, 5, pp.1434-1443. DOI:10.2166/wst.2022.060
  • 30. Yu, Y.Q., Lu, X.W., (2017). Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment. Saudi Journal of Biological Sciences, 24, 5, pp.526-531. DOI:10.1016/j.sjbs.2014.09.011
  • 31. Zhai, X., Piwpuan, N., Arias, C.A., Headley, T. & Brix, H. (2013). Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems?. Ecological Engineering, 61, 19, pp. 555-563. DOI:10.1016/j.ecoleng.2013.02.014
  • 32. Zhang, C., Ye, H., Liu, F., He, Y., Kong, W. & Sheng, K. (2016). Determination and visualization of ph values in anaerobic digestion of water hyacinth and rice straw mixtures using hyperspectral imaging with wavelet transform denoising and variable selection. Sensors, 16, 2, pp.2-10. DOI:10.3390/s16020244
  • 33. Zhang, Q.Z., Weng, C., Huang, H., Achal, V. & Wang, D. (2016). Optimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process, Frontiers in Microbiology, 6 ,1411. DOI:10.3389/fmicb.2015.01411
  • 34. Zhang, Z., Li, B-I.., Xiang, X-Y.,Zhang, C. & Chai, H. (2012). Variation of biological and hydrological parameters and nitrogen removal optimization of modified Carrousel oxidation ditch process, Journal of Central South University, 19, 9, pp. 842-849. DOI:10.1007/s11771-012-1081-7
  • 35. Zhu, X., Campanaro, S., Trea, L., Kougias, P.G. & Angelidaki, I. (2019). Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. Water Research, 151, pp. .271-279. DOI:10.1016/j.watres.2018.12.041
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f88919d7-517a-4758-adbe-4f61d04c5094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.