PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anti-periodic solutions for a higher order difference equation with p-Laplacian

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A higher order difference equation is studied. The equation is defined onℤand contains a p-Laplacian and both advance and retardation. Some criteria are established for the existence of infinitely many anti-periodic solutions of the equation. Several consequences of the main theorems are also included. Two examples are provided to illustrate the applicability of the results.
Wydawca
Rocznik
Strony
111--125
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
autor
  • Department of Mathematics, Tennessee Technological University, Cookeville, TN 38505, USA
autor
  • Department of Mathematics, Allegheny College, Meadville, PA 16335, USA
autor
  • Department of Mathematics, University of Delaware, Newark, DE 19716, USA
Bibliografia
  • [1] A. R. Aftabizadeh, S. Aizicovici and N. H. Pavel, Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces, Nonlinear Anal. 18 (1992), 253-267.
  • [2] R. P. Agarwal, A. Cabada, V. Otero-Espinar and S. Dontha, Existence and uniqueness of solutions for anti-periodic difference equations, Arch. Inequal. Appl. 2 (2004), 397-411.
  • [3] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), 1-20.
  • [4] A. Cabada, The method of lower and upper solutions for periodic and anti-periodic difference equations, Electron. Trans. Numer. Anal. 27 (2007), 13-25.
  • [5] H. Chen, Antiperiodic wavelets, J. Comput. Math. 14 (1996), 32-39.
  • [6] F. J. Devlos and L. Knoche, Lacunary interpolation by antiperiodic trigonometric polynomials, BIT 39 (1999), 439-450.
  • [7] P. Djiakov and B. Mityagin, Simple and double eigenvalues of the Hill operator with a two-term potential, J. Approx. Theory 135 (2005), 70-104.
  • [8] J. Du, H. Han and G. Jin, On trigonometric and paratrigonometric Hermite interpolation, J. Approx. Theory 131 (2004), 74-99.
  • [9] W. G. Kelly and A. C. Peterson, Difference Equation. An Introduction with Applications, 2nd ed., Academic Press, New York, 2001.
  • [10] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [11] Y. Liu, Anti-periodic boundary value problems for nonlinear higher order functional difference equations, J. Math. Ineqal. 1 (2007), 409-417.
  • [12] Y. Liu, Anti-periodic solutions of functional difference equations with p-Laplacian, Carpathian J. Math. 24 (2008), 72-82.
  • [13] H. Okochi, On the existence of periodic solutions to nonlinear abstract parabolic equations, J. Math. Soc. Japan 40 (1988), no. 3, 541-553.
  • [14] S. Pinsky and U. Tritman, Antiperiodic boundary conditions to discrete light cone quantization, Phys. Rev. D. 62 (2000), Article ID 0887701.
  • [15] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410.
  • [16] Y. Tian and J. Henderson, Three anti-periodic solutions for second-order impulsive differential inclusions via nonsmooth critical point theory, Nonlinear Anal. 75 (2012), 6496-6505.
  • [17] Y. Tian and J. Henderson, Anti-periodic solutions for a gradient system with resonance via a variational approach, Math. Nachr. 286 (2013), 1537-1547.
  • [18] Y. Tian and J. Henderson, Anti-periodic solutions of higher order nonlinear difference equations: A variational approach, J. Difference Equ. Appl. 19 (2013), 1380-1392.
  • [19] P. Wang and W. Wang, Anti-periodic boundary value problem for first order impulsive delay difference equations, Adv. Difference Equ. 2015 (2015), Paper No. 93.
  • [20] C. Xu and Y. Wu, Anti-periodic solutions for high-order cellular neural networks with mixed delays and impulses, Adv. Difference Equ. 2015 (2015), Paper No. 161.
  • [21] F. Zhang, Anti-periodic boundary value problem for impulsive differential equations with delay, Kyungpook Math. J. 48 (2008), 553-558.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f888f0ca-2320-4a49-92df-1833b9a38018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.