Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A higher order difference equation is studied. The equation is defined onℤand contains a p-Laplacian and both advance and retardation. Some criteria are established for the existence of infinitely many anti-periodic solutions of the equation. Several consequences of the main theorems are also included. Two examples are provided to illustrate the applicability of the results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
111--125
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
autor
- Department of Mathematics, Tennessee Technological University, Cookeville, TN 38505, USA
autor
- Department of Mathematics, Allegheny College, Meadville, PA 16335, USA
autor
- Department of Mathematics, University of Delaware, Newark, DE 19716, USA
Bibliografia
- [1] A. R. Aftabizadeh, S. Aizicovici and N. H. Pavel, Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces, Nonlinear Anal. 18 (1992), 253-267.
- [2] R. P. Agarwal, A. Cabada, V. Otero-Espinar and S. Dontha, Existence and uniqueness of solutions for anti-periodic difference equations, Arch. Inequal. Appl. 2 (2004), 397-411.
- [3] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), 1-20.
- [4] A. Cabada, The method of lower and upper solutions for periodic and anti-periodic difference equations, Electron. Trans. Numer. Anal. 27 (2007), 13-25.
- [5] H. Chen, Antiperiodic wavelets, J. Comput. Math. 14 (1996), 32-39.
- [6] F. J. Devlos and L. Knoche, Lacunary interpolation by antiperiodic trigonometric polynomials, BIT 39 (1999), 439-450.
- [7] P. Djiakov and B. Mityagin, Simple and double eigenvalues of the Hill operator with a two-term potential, J. Approx. Theory 135 (2005), 70-104.
- [8] J. Du, H. Han and G. Jin, On trigonometric and paratrigonometric Hermite interpolation, J. Approx. Theory 131 (2004), 74-99.
- [9] W. G. Kelly and A. C. Peterson, Difference Equation. An Introduction with Applications, 2nd ed., Academic Press, New York, 2001.
- [10] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
- [11] Y. Liu, Anti-periodic boundary value problems for nonlinear higher order functional difference equations, J. Math. Ineqal. 1 (2007), 409-417.
- [12] Y. Liu, Anti-periodic solutions of functional difference equations with p-Laplacian, Carpathian J. Math. 24 (2008), 72-82.
- [13] H. Okochi, On the existence of periodic solutions to nonlinear abstract parabolic equations, J. Math. Soc. Japan 40 (1988), no. 3, 541-553.
- [14] S. Pinsky and U. Tritman, Antiperiodic boundary conditions to discrete light cone quantization, Phys. Rev. D. 62 (2000), Article ID 0887701.
- [15] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410.
- [16] Y. Tian and J. Henderson, Three anti-periodic solutions for second-order impulsive differential inclusions via nonsmooth critical point theory, Nonlinear Anal. 75 (2012), 6496-6505.
- [17] Y. Tian and J. Henderson, Anti-periodic solutions for a gradient system with resonance via a variational approach, Math. Nachr. 286 (2013), 1537-1547.
- [18] Y. Tian and J. Henderson, Anti-periodic solutions of higher order nonlinear difference equations: A variational approach, J. Difference Equ. Appl. 19 (2013), 1380-1392.
- [19] P. Wang and W. Wang, Anti-periodic boundary value problem for first order impulsive delay difference equations, Adv. Difference Equ. 2015 (2015), Paper No. 93.
- [20] C. Xu and Y. Wu, Anti-periodic solutions for high-order cellular neural networks with mixed delays and impulses, Adv. Difference Equ. 2015 (2015), Paper No. 161.
- [21] F. Zhang, Anti-periodic boundary value problem for impulsive differential equations with delay, Kyungpook Math. J. 48 (2008), 553-558.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f888f0ca-2320-4a49-92df-1833b9a38018