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Abstract    A diagnostic and control system for a turbine is presented. The influence of the turbine controller on regulation 
processes in the power system is described. Measured quantities have been characterized and methods for detecting errors have 
been determined. The paper presents the application of fuzzy neural networks (fuzzy-NNs) for diagnosing sensor faults in the 
control systems of a steam turbine. The structure of the fuzzy-NN model and the model’s method of learning, based on 
measurement data, are presented. Fuzzy-NNs are used to detect faults procedures. The fuzzy-NN models are created and verified 
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INTRODUCTION 
The basis of many well-known methods of designing 

control, diagnostics and forecasting systems, is knowledge of 
the analytical model of a selected fragment of the 
technological process of the object, i.e., so-called partial 
particle models, developed on the basis of the laws of 
physics and cause-and-effect relation-ships [1-5]. 
Unfortunately, the construction of such models is often 
impossible, or the obtained models are inconvenient to use. 
On the other hand, the use of simplified and inaccurate 
models makes it impossible to use the analytical redundancy 
of the measurement path, which can lead to false diagnoses 
generated by diagnostic systems [5, 6]. 

Therefore, in diagnostic systems, “artificial intelligence” 
models are used: fuzzy models and neural networks or a 
combination of both techniques, i.e., fuzzy neural networks 
(fuzzy-NNs) [7-9, 10]. This paper contains an example of such 
a model, used in a steam turbine control system in order to 
detect damage in measurement paths. 

The turbines referred to in the article are installed on 
large power units involved in the regulation of the electrical 
power system. The power blocks currently being built are 
designed in such a manner as to withstand extremely high 
steam parameters; so-called supercritical parameters. Due 
to prevailing eco-nomic conditions, the power of such units 
is 1,000 MW [12]. Such high unit power and very high 
parameters of the processed steam (temperature and 

pressure) forces the use of appropriate diagnostic measures 
for the power-unit blocks. 

Modelling, including systems using “artificial 
intelligence”, is of great importance for the development of 
modern energy systems. Many models have been 
developed for conventional energy systems [13, 14] and for 
renewable energy systems [14, 5]. 

There are relatively few sources using fuzzy-NN 
modelling for diagnostic purposes in steam turbines. 
However, publications on modelling and diagnostics of wind 
turbines [11] and gas turbines [16] can be found. 

This article presents research on a 120-MW power block, 
be-cause such a block has been made available for testing. 
The diagnostic system presented, which uses fuzzy-NN 
systems, is scalable and can be transferred to the power unit 
working in the supercritical parameter region, e.g., the 900-
MW class. This development has already been carried out. It 
is facilitated by the fact that on modern power units (usually 
with DCS systems), there is a large quantity of data that can 
be used to “train” fuzzy-NN models.  

Research was conducted to test various model 
structures and relationships between measurement signals. 

I. TURBINE CONTROL SYSTEM 
In a power system, the energy unit of the boiler-turbine-

engine acts as complex, multidimensional regulation 
system. It consists of numerous automatic regulating objects 
whose task is to maintain particular parameters at certain 
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levels. These objects, which can control numerous 
parameters, act on the basis of cross coupling, which means 
that almost every input type interacts with many output 
types. It is possible to simulate the mutual connections of 
parameters measured by the energy control block [12]. The 
choice of a suitable method of modelling depends on the 
design of the system: at present there is increasing use of 
artificial intelligence, including artificial neural networks and 
fuzzy logic systems.  

The main task of the power unit, which is involved in the 
power and frequency regulation of the power system, is 
proper implementation of turbine set power changes 
(turbine and generator), which should be fast and, if 
possible, without delay or deformation, following the set 
power signal. One of the methods for ensuring the required 
rate of block load changes is to create an appropriate 
structure for the load control system, and in particular the 
turbine regulation system included within it. 

The principle of operation of the power-block load 
system with a leading turbine, is shown in Fig. 1. The power 
deviation resulting from the comparison of the real power P 
with the set power Pset is sent to the input of the regulator 
RP, whose output signal YH, through the electro-hydraulic 
converter ET of the regulator, controls the movement of the 
control valves of the turbine V. 

The boiler-pressure control unit regulates the fuel inflow 
by controlling the fuel feeder (FF). The main task of this 
system is to maintain pressure pT at the set pressure level. 
Under these conditions there is an equilibrium between the 
energy delivered by the fuel to the boiler and the energy 
output from boiler via steam. When overriding the pressure 
control unit using the Rp  characteristic, the regulated 
pressure pT and set pressure pset are compared.  

Fig. 1. Load control of the power unit with a leading turbine  
(B – boiler, T – turbine, G – generator, EPS – electric power sys-
tem, RP – power regulator, Rp – pressure regulator, FF – fuel 
feeder, YH – control signal, V – valves, ET – electro-hydraulic 
transducer, P – power, pT  – steam pressure, Pset – set point for 
power and pset  – set point for pressure) 

Currently, a new type of central regulator has been 
introduced in the Polish electro-energy system (power 
system) – LFC (load frequency control). The signal PW is 
transmitted to the generating unit. The PW signal is 
expressed in the form of a real number, which describes the 
set power value in MW, according to the ICCP protocol 
(Inter-Control Center Communication Protocol). In the case 
of three-way regulation, the Pz_100 signal, every 15 
minutes, carries information about the power baseline. The 
base power command, like the secondary regulation com-

mand, is sent in the form of a real number representing the 
set base power value in MW.  

The LFC regulator module processing the secondary 
regulation signals operates in real time with a closed 
feedback loop. It has a PI (proportional-integral) structure 
and produces a set power signal based on Equation (1). 
 

ܲ߂ = ߚ − · ܧܥܣ − ଵ
்

∫ · ܧܥܣ d(1)              ݐ 
 
where 
ΔP is the set power output adjustment [MW], 
β is the proportional gain factor [1/MW], 
ACE is the regulatory error of the regulated area [MW] and 
T is the integration time constant of the integrator [s]. 
The area error ACE is determined by Equation (2). 
 

ܧܥܣ = ߂ ܲ  + ܭ  ·  (2)                      ݂߂ 
 
where 
ΔPi is the power transmission error [MW], 
K is the system constant [MW/Hz] and 
Δf is the frequency error [Hz]. 

Fig. 2. Block diagram of the  turbine power controller  
(T – turbine, G – generator, C – condenser, RP – power regulator, Rn – 
rotation regulator, YH – control signal, V – valves, ET – electro-
hydraulic transducer, P – power, pi  – oil pressure, pT – steam pressure, 
ps – absolute vapour pressure, Pset  – set point for power, nset – set point 
for rotation, PW and Pz_100 – signals from LFC, A/M – manual or 
automatic control, SPL – steam power limiter and VPL – vapour power 
limiter) 

The requirement for proper operation of the LFC control 
system is the achievement of a sufficiently fast response 
time to power variations in the system. This response time 
cannot exceed 30 s. In addition, the control band must be 
activated quickly enough. The activation should take, at 
most, 15 minutes, which means that for the control band, 
the minimum rate of power changes in the network must be 
133 MW/min. This requirement is achieved by splitting the 
required power over individual generating units, since the 
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rates of change for charging the generating units are then 
much lower. 

II. SENSOR IN TURBINE CONTROL SYSTEM  
The power unit is regulated via the turbine control valves 

(power regulation with a leading turbine). Suitable analogue 
and binary signals, used for control and protection in the 
control system, are introduced to the turbine controller 
(Fig.2). 

Measurement paths and control signals are divided into 
four groups as follows(Fig 3.).  
1. Measurements of physical quantities directly from the 
object, (e.g., power, pressure, steam flow). 
2. External signals coming directly from the electro-energy 
system or directly from the central controller, (e.g., PW – 
secondary set power, Pz_100 – three-way set power and f – 
voltage frequency in the electro-energy system). 
3. Electronic signals transmitted inside the regulator, (e.g., 
between the main regulator, the ignition switch and the 
terminal). 
4. Auxiliary measurements for the diagnosis of the actuator, 
(e.g., control oil pressure). 
The signals of groups (1) and (2) are determinate, while 
those of (3) and  (4) are stochastic. 

The basic output signal from the regulator is the control 
signal YH , which controls the operation of the turbine control 
valves. The value of this signal changes in the standard range 
of 0-20mA.The electro-hydraulic transducer ET converts the 
electrical signal into an oil pressure that controls the position 
of the turbine’s high-pressure servo valves. 

The basic quantities regulated in the system are the 
active power and rotational speed. Active power is supplied 
to the system through a measurement transducer, which 
measures the active power of the generator in a three-phase 
system. 

Before synchronizing the generator with the power grid, 
the rotational speed of the turbine is a controlled parameter. 
The rotational speed is measured using a toothed wheel and 
an inductive sensor. The acquired measurement signal, in 
the form of frequency, is transferred to the appropriate 
counter input of the controller. 

Measurement of the voltage frequency of the power 
grid is also transferred to the counter input of the controller. 
Since simultaneous turbine regulators allow the power block 
to operate via regulation of the electro-energy system, these 
systems must be adapted to receive the signals that control 
the system regulation (PW and Pz_100). Information 
exchange between the turbine control system and the LFC 
system controller is carried out by means of electronic links, 
according to the appropriate data exchange protocol. 

Other signals introduced into the condensing turbine 
controller, such as fresh steam pressure, absolute pressure 
in the con-denser, valve position and fresh steam mass flow, 
are supplied to the system to ensure good cooperation of 
the automatic steam pressure regulation system with the 
condensing turbine power control system. 

The measurement paths of these quantities are 
standard unipolar signals of 4-20 mA. 

 
 

 

Fig. 3. Measuring tracks in the turbine control system  

Table 1. Set of input signals  
Symbol Signal Unit 

P Electrical  power MW 
pT Steam pressure MPa 
ps Absolute vapour pressure in condenser % 
pi Oil pressure MPa 
m Steam mass flow t/h 
Y Opening degree of control valves % 
n Rotation of turbine min-1 

f Frequency Hz 
PW System set point for power MW 

Pz_100 Power set-point signal MW 
I Current signal mA 
 
Quantities such as the signal Pz_100 and the secondary 

control signal Pw, are transmitted to the system from the 
outside. The specificity of changes and the types of 
presented quantities enforce the use of specific methods of 
detecting damage to their measurement paths. Detection 
methods must be used here to assess the correctness of the 
received signal, on the basis of the analysis of one variable 
only, i.e., methods based on the control of process variables. 

The second group of process variables recorded by the 
controller are local signals received from a given power unit. 
Here methods based on controlling the connections 
between process variables can be used, in particular, object 
models. Determination of residues on the basis of a model is 
the most robust and reliable method of detection, provided 
that the model is accurate. The use of models in diagnostics 
for measurement paths allows parametric damages to be 
detected over time. 

Internal regulator signals, such as connections between 
the operator’s station or the terminal and the 
communication link with the visualization system, must be 
controlled online in online mode. Fault detection must 
adequately reconfigure the controller’s hardware structure 
[5]. 

III. FUZZY NEURAL NETWORK MODELS FOR DIAGNOSTIC 
SYSTEMS  

MODEL CONSTRUCTION 
The construction scheme of the model is presented in 

Fig. 4. The fuzzy-NN structure can be divided into two main 
parts. The first part represents the so-called premise and is 
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responsible for the fragment of the fuzzy rule “if...”. It 
implements the part of the inference mechanism 
responsible for calculating the level of firing of the rules. The 
second part represents the so-called conclusion 
corresponding to the fragment of fuzzy rule “than...” and 
calculates the output of the model. The “premise” part is 
identical for all types of network; the difference appears in 
the “conclusion” part of the model [14]. 

In Fig. 4, a fuzzy neural network is presented. Layer (D) 
rep-resents the firing level for individual rules. The firing level 
of rules is determined as the product of the value of 
membership functions included in the “premise”, while the 
“conclusion” is consistent with constants. This is the case for 
a model with two in-puts, one output and nine rules.  

This is only a simple example. Nine rules are not enough 
to build satisfactory models for diagnostic purposes.  

Fig. 4. Implementation of the FNN model with conclusions in 
the form of constants 

The “conclusions” of the presented network are 
contained in layers (D) and (E), and the weights wfk represent 
the constants. The network shown in Fig. 4 can be 
considered as a special case of a Takagi-Sugeno-Kang fuzzy 
model, in which the “conclusions” of the rules, rather than 
the equations for linear input variables, contain constants. 
LEARNING MODELS 

After determining the type of network used, the 
structure be-gins to learn based on data collected from the 
object. The fuzzy-NN learning method can be based on a 
backward error propagation algorithm. It defines the 
method of selecting the network weights using gradient 
optimization methods. The basis of the algorithm is a 
criterion function. Its purpose is to minimize the weights in 
the network. 

In the considered case, the criterion function takes the 
following form (3). 

After determining the type of network used, the 
structure begins to learn based on data collected from the 
object. The fuzzy-NN learning method can be based on a 
backward error propagation algorithm. It defines the 
method of selecting the network weights using gradient 
optimization methods. The basis of the algorithm is a 
criterion function. Its purpose is to minimize the weights in 

the network. 
In the considered case, the criterion function takes the 

following form (3). 

(ܹ)ܧ =
1
2

ݐ) −  ଶ (3)(∗ݕ

 
where 
t  is the reference value of the output from the model, 
y*  is the current value of the output from the model and 
W  is the weight of the network. 
 
 

Weighting updates take place each time after entering the 
training pair (X,t), where X is the network input, from the 
corresponding training set. After determining the criterion 
function, it should be minimized. This is done by modifying 
the network weights by a certain amount Δw in proportion 
to the gradient of the function. For a single weight w, 
dependencies (4) and (5) can be specified. 

ݓ߂ = ߟ−
(ܹ)ܧ߲

ݓ߲
 (4) 

 
 

݊)ݓ + 1) = (݊)ݓ +  (5) (݊)ݓ߂
where 
η is the learning factor,  
n is the current moment and n+1 is the next moment. 
 

The network learning algorithm will be discussed on the 
basis of the fuzzy-NN network shown in Fig. 4. In contrast to 
one-way neural networks, fuzzy-NN networks do not have a 
homogeneous structure. This entails the need to derive a 
learning algorithm for each layer separately. The learning 
algorithm should start from the output layer, i.e., from  the 
modification of the weights wfk (6). 

 
(ܹ)ܧ߲

ݓ߲
 = ݐ)− − (∗ݕ

∗ݕ߲

ாݔ߲

ாݔ݀

ݓ݀
  (6) 

 
where  
wkf  is the k-th weight of the connections between layers (D) 
and (E) (Fig. 4) and 
xE is the input of layer (E).  
To unify the presented equations, it was assumed for layer 
(E) that 
ாݔ ≜  .leading to Equations (7) and (8) ,∗ݕ

 
∗ݕ߲

ாݔ߲ = 1 (7) 
 
 

ாݔ =  ݓ
 ݕ

 ⤇
dݔா

dݓ




= ݕ
 (8) 

 
Equation (6) is simplified to the following form (9). 

(ܹ)ܧ߲
ݓ߲

 = ݐ)− − ݕ1(∗ݕ
 = ݕߜ−

 (9) 

 
where  
ykD is the k-th unit output of layer (D) and  
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δ = (t-y*) is the reverse layer difference for layer (D).  
 

On the basis of Equations (4), (5) and (9), the algorithm for 
modifying a single weight wfk can be written as in (10) and 
(11). 

ݓ∆
(݊) = ݕߜߟ

  (10) 
 
 

ݓ
 (݊ + 1) = ݓ∆

(݊) + ݓ∆
 (݊) (11) 

 
where 
ηf is the coefficient of learning for weight wfk  of layer (E) of 
the network. 

After calculating the reverse difference of layer (D), 
calculations for layer (C) (12) can be performed.  

 

ߜ
 =  ,ߜ

 ෑ ݕ ,
 ݔ)′݂

)
ஷ

 (12) 

 
 
where 
δCj is the j-th reverse layer difference for layer (D) and δCkj is 
the reverse difference of the k-th unit of layer (D), which is 
connected with the j-th unit of layer (C). Hence, for δCj, Πi≠jyCik 
is the product of the output signals of the layer units (C), up 
to the k-th layer unit (D), excluding the case I = j, f’() is the 
derivative of the internal function of the layer units (C) and 
xCj is the input of the j-th unit of layer (C).  
 

The Gaussian functions G(x) are used for fuzzification of 
crisp inputs. Thus, the membership functions of the xj  input 
have the form shown in Equation (13).  

 
(ݔ)ܩ = ݔ݁ − ݓ)

(ݔ + ݓ
 ))ଶ                (13) 

 
For the Gaussian function, the aforementioned 

derivative takes the form shown in Equation (14). 
 

݂ᇱ൫ݔ
൯ = ݔ2

݂(ݔ
)                                (14) 

 
The algorithm for modifying the weights wg is given in 

Equation (15). 
 

ݓ
(݊ + 1) = ݓ

(݊) + ߜߟ
หݓ

(݊)หݕ
 (15) 

 
where  
ηg is the learning factor of weight wg and 
yBj is the output of the j-th unit of layer (C).  
 

The reverse differences of layer units (B) δBj, are 
calculated in the following manner (16). 
 

ߜ
 = ݓ

ߜ
 (16) 

 
The modification of the weights wc is described in 

Equation (17). 
 
 

ݓ
(݊ + 1) = ݓ

(݊) + ߜߟ
1 = ݓ

(݊) + ߟ ݓ
(݊)ߜ

  (17) 
 
where 
ηC is the learning factor for weight wc. 

 

IV. MODELS FOR POWER UNIT 
FUZZY-NN MODELS FOR FAULT DETECTION  

The model structure in the form of a fuzzy neural 
network is organized into the following two steps: the 
amount, type and location of fuzzy sets for each entry is 
determined and then a set of rules is defined to form a 
combination of all sets of fuzzy in-puts [7-11]. 

In order to carry out diagnostics on measurement 
systems based on the input data presented in Table 1, the 
combinations for the development of partial models were 
selected. Partial models are needed to develop a detection 
procedure for faults in measurement circuits, and they are 
used to obtain residuals. On the basis of the analysis of 
residuals, a fault detection procedure is performed as 
[18,19].  

The models are presented with dependencies as shown 
in Equations (18) to (23) (the designations are presented in 
Table 1). 

̂ =  (18) (ܫ)݂
መܫ = ݂(ܲ,  (19) (்
ෝ݉ = ݂(ܻ,  (20) (்
ܲ = ,ܫ)݂ ௧ܲିଵ) (21) 

ܲ = ݂(ܻ, ,௦  (22) (்
ܻ =  (23) ()݂

 
The purpose of further analysis is to find models with the 

simplest possible structures that satisfy the assumed 
requirements. The aim of using simple structures results 
from the need to minimize learning times and the time 
required for model output calculations. The presented 
relationships should also take into account the dynamics of 
changes in the modelled values. 

For functional reasons, combinations of (19) to (23) were 
selected for modelling, bypassing Equation (18) because this 
should present a linear relationship in a properly functioning 
system and it is used for the diagnostics of the actuator. De-
pendency (23) has been extended to (24) and (25), due to 
the division of the steam stream into two pipelines supplying 
steam to the turbine. 
 

ܻ = )݂ , ܻ) (24) 
ܻ = )݂ , ܻ) (25) 

 
The process of training the models presented with the 

above relationships, was carried out using the reverse error 
propagation algorithm. For learning models, a training set 
was used based on data collected from the real object 
(turbine on a 120-MW block). The learning factor for the 
weights was η = 0.001. For each of the modelled 
combinations, tests with different initial values were carried 
out. The weights that were subject to modification aimed to 
reach the same value regardless of the starting point. Model 
verifications were carried out on the basis of a set of data 
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with no training set. 
 
In the following part of the article, selected charts 

showing the effects of modelling for the developed 
networks according to the relationship (20 are presented. 
During the tests, the influence of selected elements on the 
quality of the obtained models was examined. Different data 
sets were taken into consideration. 

To model the combination according to the relationship 
(20) for the input variables, five partitions were allocated, 
i.e., five membership functions for each input. The Gaussian 
bell function was used as a membership function, according 
to the dependence described in Equation (13). 

 

Fig. 5. Structure of the fuzzy-NN model for Equation (22) 
 
The structure shown in Fig. 5. is a development of the 

model presented in Fig. 6. On the basis of research and 
analysis, it was found that satisfactory modelling results 
were obtained with only the five membership functions. 
Since each input is divided into five fuzzy sets for two inputs, 
5 x 5 = 25 rules should be specified. The next stage in the 
construction of the fuzzy-NN model is to find the 
membership functions. The positions and initial shapes of 
these functions should be determined. The structure of 
model (20) consists, among other things, in finding 
appropriate membership functions for the input quantities 
of the model, i.e., Y – control of valves and pT – steam 
pressure.  

For the dependency (13) describing the Gaussian bell 
function, the coefficients wg  and wc should be selected. The 
parameter wg determines the shape of the function and wc 
concerns the location in the space describing the entrance. 
The input Y has been divided into five fuzzy sets and the 
range of changes of the signal is <0,100>%. The values of the 
coefficients are as follows: wc = 0.0, 25.0, 50.0, 75.0 and 100, 
and the slope wg = 0.075. The input pT has become divisible 
in the same way to cover the entire range of changes in the 
steam pressure signal, which is in the range <11,14> MPa. 
The values of the coefficients are as folows: wc = 11, 11.75, 
12.5, 13.25 and 14.0, and the slope of the function wg = 0.2. 

To collect the appropriate data sets needed for the 
models’ learning, tests were carried out on the object. The 

set power for the power unit was subject to changes in the 
whole range of the regulatory band. Changes of other 
quantities, such as steam pressure, valve position and steam 
flow, followed the power changes. The data were recorded 
to a file with a frequency of 1s. In the graph in Fig. 6, an 
example printout from one file containing training data, is 
presented. 

Fig.6. Training data for the model from Equation (20) 
 
The effect of modelling for the data included in the 

training set (Fig. 6) is shown in Figure 7. The actual value of 
the steam stream (m [t/h]) and the output value from the 
model (m ̂ [t/h]) are shown on one graph. The lower part of 
the graph shows the residues for the model r = m-m ̂ and the 
mean value in the sliding time window from the average 
residue r. 

The learning process was completed after about 600 
presentations of the training set. For the character-error 
criterion (26): 

 

ܬ =
1
ܰ


ݕ| − |పෝݕ

ݕ
×  100% 

ே

ୀଵ

 (26) 

where 
N is the number of samples in the training set, 
y î is the value calculated from the model and 
yi is the measured value from the object. 
 

Fig. 7. Verification data for the model, from Equation (23) 
 

Based on Fig. 7, the effects of modelling for the selected 
combination can be analysed. Two parameters were chosen 
as the criteria for the quality of modelling: the J-coefficient 
from Equation (26) and rmax – the maximum absolute value 
of the residue for a given test. The values of these 
coefficients were as follows: for the graph from Fig. 7, J = 
0.55% and rmax = 3 t/h. These values were considered 
sufficient for industrial purposes for the tested object. 
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To confirm the results, the model was verified using 
another set of data with the same parameters but without 
using the learning process. The set of verification data is 
presented in Fig. 8. This example set is one of many. 

 
Fig. 8. Verification data for the model from Equation (20) 
 
The range of changes in the steam stream is from 170 

t/h to 195 t/h, while the steam pressure changed from 12.2 
MPa to 12.7 MPa. These ranges correspond to the rated 
operating conditions of the control object during system 
control. The second important condition is that the range of 
changes was within the range of training data from Fig. 9. 

 

Fig. 9. The modelling effect for data not covered by the training set 
 
The modelling effect is presented in Fig. 9 as before (for 

Fig. 7.) The mass stream of real and modelled steam and the 
residual as the difference of these quantities, are shown. The 
values of these coefficients were as follows: J = 1.28 % and 
rmax = 10 t/h. A deterioration in the indicators is shown in the 
last fragment of the drawing, where one can observe 
relatively large differences between the model and the 
actual value. After the analysis, it turned out that the reason 
was the incorrect operation of the turbine control valves. In 
Fig. 8. we can observe the maximum control of the signal Y. 

Already, at the stage of designing the diagnostic system, 
the models showed their suitability for detecting 
malfunctions in the control system. 
FAULT ISOLATION 

Fault isolation procedures for power, steam pressure, 
pressure in the condenser and steam mass flow rate sensor 
faults are based on models (19), (20) and (22). Residuals (27), 
(28) and (29) are generated. 

 
 

 
ଵݎ = ܫ −  መ (27)ܫ

ଶݎ = ݉ − ෝ݉  (28) 
ଷݎ = ܲ − ܲ (29) 

 
On the basis of a binary diagnostic matrix (Table 2) 

developed by an expert, a set of rules necessary to locate 
faults in an example solution can be developed. 
 
Table 2. Binary diagnostic matrix 

 P pS pT m 
r1 1 0 1 0 
r2 0 0 1 1 
r3 1 1 1 0 

 
Fault isolation procedures for sensor faults are based on 

a set of six rules: 
 

a) If r1 = 0 and r2 = 0 and r3 = 0 then fault-free 
b) If r1 = 1 and r2 = 0 and r3 = 1 then fault P 
c) If r1 = 0 and r2 = 1 and r3 = 0 then fault m  
d) If r1 = 1 and r2 = 1 and r3 = 1 then fault pT 
e) If r1 = 0 and r2 = 0 and r3 = 1 then fault pS 
f) Otherwise, unknown state  

V. CONCLUSIONS 
The presented diagnostic system ensures rapid location 

of the fault before it adversely affects the course of the 
adjustment process. Currently, the majority of turbine 
controllers using microprocessor controllers use costly 
equipment redundancy in the measurement sensors. The 
introduction of information based methods of measuring 
path redundancy increases the reliability of these systems. 
Simulations and object tests have shown that the measuring 
methods presented in this paper for the detection and 
isolation of faults in the measurement paths are well-suited 
to their functions. The functionality of the entire control 
system is improved and the costs of implementing the 
turbine control system are reduced. 

Based on the experience gathered in the project and the 
literature studies carried out, some comments on fuzzy-NN 
models used for diagnostic purposes may be made. 
• These modelling methods are extremely useful for fault 
detection in non-linear industrial facilities, among other 
systems. 
• Proper preparation of training data largely determines the 
later correct operation of the fuzzy model. 
• It is necessary to provide training data covering the entire 
work area of the object. 
• The right choice of the structure of the model is very 
important; knowledge about the object and knowledge 
related to the applied modelling techniques must both be 
used. 
• The number of fuzzy model rules increases sharply with an 
increase in the number of inputs and the number of fuzzy 
sets for individual inputs. This limits their application to 
simple objects.  
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DIAGNOSTYKA USZKODZEŃ TORÓW POMIAROWYCH W 
UKŁADZIE STEROWANIA TURBINY PAROWEJ 

Przedstawiono system diagnostyki dla układu sterowania turbiny 
parowej. Opisano procesy regulacji w systemie elektroenergetycznym 
oraz strukturę układu regulacji turbiny kondensacyjnej w układzie bloku 
energetycznego. Mierzone wielkości zostały scharakteryzowane wraz z 
metodami wykrywania uszkodzeń dla poszczególnych wielkości. W 
pracy przedstawiono zastosowanie rozmytych sieci neuronowych do 
detekcji uszkodzeń torów pomiarowych Przedstawiono strukturę 
modelu rozmytego i metodę uczenia modelu na podstawie danych 
pomiarowych.  Zaprezentowano przykład zastosowania modelu FNN i 
zweryfikowano jego działanie na podstawie rzeczywistych danych 
pomiarowych  

Słowa kluczowe: diagnostyka, turbina, system sterowania, sieci 
neuronowe. 
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