PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

ChatGPT in supply chain management - a research model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the research is to indicate potential areas of application for ChatGPT in the supply chain and the associated outcomes with reference to specific examples. The purpose of the deliberations is also to propose a research model, which will serve as an empirical matrix for examining case studies and, as this technology becomes more widespread, for quantitative research. Design/methodology/approach: In the first stage of the research, a qualitative review of scientific literature was conducted. Subsequently, selected items were assigned to thematic modules, guided by knowledge of the sequencing of processes in the supply chain. The collected material allowed for the identification of research gaps in the discussed topic. Findings: As a result of the undertaken work, a measurement tool has been proposed, useful for future research on the use of ChatGPT in supply chains, consisting of several constructs and dozens of test items. This is also the first such proposal in the world literature. It has been found that the application of ChatGPT at its current stage of development and empirical evidence is primarily illustrated in relation to logistics and marketing management, mainly in customer service and transport tasks. The effectiveness of chat application has been confirmed, among others, in the area of supply chain configuration, supplier selection, inventory management, production, and transportation. However, these are individual studies. There is a lack of empirical studies on the use of GPT in freight forwarding, logistics operators, distribution, and reverse logistics. Research is also needed on the connections between the described technology and other Industry 4.0 technologies used in the supply chain. Such correlations have been examined in relation to blockchain, 3D, but the potential in this area is much greater. Research limitations/implications: The article integrates knowledge of supply chain management and the potential of one of the most advanced Natural Language Processing models. This area is exceptionally under-explored compared to previous works in the field of ChatGPT. Practical implications: Enterprises implementing ChatGPT in their supply chains can generate specific business benefits outlined in the research model. Social implications: The described technology can have positive effects in all dimensions of sustainable activities.
Rocznik
Tom
Strony
295--312
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
  • Poznań University of Economics and Business, Department of Logistics
  • Poznań University of Economics and Business, Department of Logistics
Bibliografia
  • 1. Abedi, M., Alshybani, I., Shahadat, M.R.B., Murillo, M. (2023). Beyond Traditional Teaching: The Potential of Large Language Models and Chatbots in Graduate Engineering Education. Qeios, 1-45. doi: 10.48550/arXiv.2309.13059
  • 2. Aggarwal, S. (2023). A Review of ChatGPT and its Impact in Different Domains. International Journal of Applied Engineering Research, 18(2), 119-123. doi.org/10.37622/IJAER/18.2.2023.119-123
  • 3. Aljaž, T. (2024). Enhancing Retail Operations: Integrating Artificial Intelligence into the Theory of Constraints Thinking Process to Solve Shelf Issue. Elektrotehniski Vestnik, 91(1/2), 53-58.
  • 4. Arman, M., Lamiya, U.R. (2023). ChatGPT, a Product of AI, and Its Influences in the Business World. Talaa: Journal of Islamic Finance, 3(1), 18-37. doi.org/10.54045/talaa.v3i1.725
  • 5. Badini, S., Regondi, S., Frontoni, E., Pugliese, R. (2023). Assessing the capabilities of ChatGPT to improve additive manufacturing troubleshooting. Advanced Industrial and Engineering Polymer Research, 6, 278-287. doi.org/10.1016/j.aiepr.2023.03.003
  • 6. Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G.J., Beltran, J.R., Varma, A. (2023). Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT. Human Resource Management Journal, 33(3), 606-659. doi: 10.1111/1748-8583.12524
  • 7. Chen, H. (2023, December). Generating E-commerce Product Reviews Based on GPT-2. 3rd International Conference on Social Development and Media Communication (SDMC 2023). Atlantis Press, pp. 110-116. doi.org/10.2991/978-2-38476-178-4_14
  • 8. Deb, J., Saikia, L., Dihingia, K.D., Sastry, G.N. (2024). ChatGPT in the Material Design: Selected Case Studies to Assess the Potential of ChatGPT. Journal of Chemical Information and Modeling, 64(3), 799-811. doi.org/10.1021/acs.jcim.3c01702
  • 9. Deng, J., Lin, Y. (2022). The benefits and challenges of ChatGPT: An overview. Frontiers in Computing and Intelligent Systems, 2(2), 81-83. doi.org/10.54097/fcis.v2i2.4465
  • 10. Du, H., Teng, S., Chen, H., Ma, J., Wang, X., Gou, C., Wang, F.Y. (2023). Chat with chatgpt on intelligent vehicles: An ieee tiv perspective. IEEE Transactions on Intelligent Vehicles, 8(3). doi.org/10.1109/TIV.2023.3253281
  • 11. Fang, Y., Chen, M., Liang, W., Zhou, Z., Liu, X. (2023). Knowledge Graph Learning for Vehicle Additive Manufacturing of Recycled Metal Powder. World Electric Vehicle Journal, 14(10), 289. doi.org/10.3390/wevj14100289
  • 12. Farooq, M.S., Ansari, Z.K., Alvi, A., Rustam, F., Díez, I.D.L.T. et al. (2024). Blockchain based transparent and reliable framework for wheat crop supply chain. PLOS ONE 19(1), e0295036. doi.org/10.1371/journal.pone.0295036
  • 13. Feki, M., Dudézert, A. (2024). Exploration du potentiel de ChatGPT dans la Supply Chain: revue de littérature et pistes de recherche. AIM 2024: 29e Conférence de l'Association Information et Management.
  • 14. Feng, J., Ning, Y., Wang, Z., Li, G., Xu, S.X. (2024). ChatGPT-enabled two-stage auctions for electric vehicle battery recycling. Transportation Research Part E: Logistics and Transportation Review, 183, 103453. doi.org/10.1016/j.tre.2024.103453
  • 15. Frederico, G.F. (2023). ChatGPT in Supply Chains: Initial Evidence of Applications and Potential Research Agenda. Logistics, 7(26), 1-9. doi.org/10.3390/logistics7020026
  • 16. Freire, S.K., Foosherian, M., Wang, C., Niforatos, E. (2023). Harnessing large language models for cognitive assistants in factories. Proceedings of the 5th International Conference on Conversational User Interfaces, 44, 1-6, doi/10.1145/3571884.3604313
  • 17. George, A.S., George, A.H. (2023). A review of ChatGPT AI's impact on several business sectors. Partners Universal International Innovation Journal, 1(1), 9-23. doi:10.5281/zenodo.7644359
  • 18. Haddud, A. (2024). ChatGPT in supply chains: exploring potential applications, benefits and challenges. Journal of Manufacturing Technology Management, doi 10.1108/JMTM-02-2024-007
  • 19. Haque, M.A., Li, S. (2024). Exploring ChatGPT and its impact on society. AI and Ethics, 1-13. doi.org/10.1007/s43681-024-00435-4
  • 20. Helo, P., Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: An exploratory case study. Production Planning & Control, 33(16), 1573-1590. doi: 10.1080/09537287.2021.1882690
  • 21. Hendriksen, C. (2023). Artificial intelligence for supply chain management: Disruptive innovation or innovative disruption? Journal of Supply Chain Management, 59(3), 65-76. doi.org/10.1111/jscm.12304
  • 22. Jackson, I., Jesus Saenz, M., Ivanov, D. (2024). From natural language to simulations: applying AI to automate simulation modelling of logistics systems. International Journal of Production Research, 62(4), 1434-1457. doi.org/10.1080/00207543.2023.2276811
  • 23. Jato-Espino, D., Castillo-Lopez, E., Rodriguez-Hernandez, J., Canteras-Jordana, J.C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction, 45, 151-162. doi.org/10.1016/j.autcon.2014.05.013
  • 24. Javaid, M., Haleem, A., Singh, R.P. (2023). A study on ChatGPT for Industry 4.0: Background, potentials, challenges, and eventualities. Journal of Economy and Technology, 1, 127-143. doi.org/10.1016/j.ject.2023.08.001
  • 25. Kalla, D., Smith, N. (2023). Study and analysis of chat GPT and its impact on different fields of study. International Journal of Innovative Science and Research Technology, 8(3). 827-833. doi:10.5281/zenodo.7767675
  • 26. Kar, A.K., Varsha, P.S., Rajan, S. (2023). Unravelling the impact of generative artificial intelligence (GAI) in industrial applications: A review of scientific and grey literature. 310 A. Maryniak, K. Pogorzelec-Glaser Global Journal of Flexible Systems Management, 24(4), 659-689. doi.org/10.1007/s40171-023-00356-x
  • 27. Karthikeyan, K., Sudhesh, R. (2016). Recent review article on queueing inventory systems. Research Journal of Pharmacy and Technology, 9(11), 2056-2066. doi:10.5958/0974-360X.2016.00421.2
  • 28. Khan, S.A., Chaabane, A., Dweri, F. (2018). Multi-Criteria Decision-Making Methods Application in Supply Chain Management: A Systematic Literature Review. In: V.A.P. Salomon (ed.), Multi-Criteria Methods and Techniques Applied to Supply Chain Management. IntechOpen. doi: 10.5772/intechopen.74067
  • 29. Kumar, A., Gupta, N., Bapat, G. (2024). Who is making the decisions? How retail managers can use the power of ChatGPT. Journal of Business Strategy, 45(3), 161-169; doi:10.1108/JBS-04-2023-0067
  • 30. Lee, J., Kim, J. (2023). Social equity analysis of public transit accessibility to healthcare might be erroneous when travel time uncertainty impacts are overlooked. Travel Behaviour and Society, 32, 100588. doi.org/10.1016/j.tbs.2023.100588
  • 31. Lepenioti, K., Bousdekis, A., Apostolou, D., Mentzas, G. (2020). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57-70. doi.org/10.1016/j.ijinfomgt.2019.04.003
  • 32. Li, B., Mellou, K., Zhang, B., Pathuri, J., Menache, I. (2023). Large language models for supply chain optimization. arXiv preprint arXiv:2307.03875.
  • 33. Li, S., Guo, Z., Zang, X. (2024). Advancing the production of clinical medical devices through ChatGPT. Annals of Biomedical Engineering, 52(3), 441-445. doi.org/10.1007/s10439-023-03300-3
  • 34. Li, Yunqing, Starly, Binil (2024). Building a knowledge graph to enrich ChatGPT responses in manufacturing service discovery. Journal of Industrial Information Integration, 40, 100612. doi.org/10.1016/j.jii.2024.100612
  • 35. Lim, L., Siripipatthanakul, S. (2023). A Review of Artificial Intelligence (AI) and ChatGPT Influencing the Digital Economy. International Conference On Research And Development (ICORAD), 2(2), 29-42. doi.org/10.47841/icorad.v2i2.139
  • 36. Napoli, E.A., Gatteschi, V. (2023). Evaluating ChatGPT for Smart Contracts Vulnerability Correction. IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC), Torino, Italy, 1828-1833. doi: 10.1109/COMPSAC57700.2023.00283
  • 37. Price, G. (2023). The AI-Driven Logistics Revolution: How Shipwell is Harnessing the Power of ChatGPT. Shipwell, https://shipwell.com/resources/the-ai-driven-logistics-revolution-how-shipwell-is-harnessing-the-power-of-chatgpt/
  • 38. Rathor, K. (2023). Impact of using Artificial Intelligence-Based Chatgpt Technology for Achieving Sustainable Supply Chain Management Practices in Selected Industries. International Journal of Computer Trends and Technology, 71(3), 34-40. doi.org/10.14445/22312803/IJCTT-V71I3P106
  • 39. Rathore, B. (2023). Future of textile: Sustainable manufacturing & prediction via chatgpt. Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal, 12(1), 52-62. doi:10.56614/eiprmj.v12i1y23.253
  • 40. Richey, Jr R.G., Chowdhury, S., Davis-Sramek, B., Giannakis, M., Dwivedi, Y.K. (2023). Artificial intelligence in logistics and supply chain management: A primer and roadmap for research. Journal of Business Logistics, 44(4), 532-549.
  • 41. Sadiq, M.W., Akhtar, M.W., Huo, C., Zulfiqar, S. (2024). ChatGPT-powered chatbot as a green evangelist: an innovative path toward sustainable consumerism in E-commerce. The Service Industries Journal, 44(3-4), 173-217. doi:org/10.1080/02642069.2023. 2278463
  • 42. Saka, A., Taiwo, R., Saka, N., Salami, B.A., Ajayi, S., Akande, K., Kazemi, H. (2023). GPT models in construction industry: Opportunities, limitations, and a use case validation. Developments in the Built Environment. doi.org/10.1016/j.dibe.2023.100300
  • 43. Shabrina, N. (2024). Integrating GPT in marketing research practices. Master's thesis. Padova: Universita'Degli Studi Di Padova.
  • 44. Singh, S., Kaur, H. (2023). Analyzing the Impact of UPI on Supply Chain Performance: A Natural Language Processing Approach with Generative Pre-trained Trans-formers. International Conference on Entrepreneurship, Innovation, and Leadership Singapore. Springer Nature Singapore, pp. 107-122. doi:10.1007/978-981-97-1682-1_10
  • 45. Skórnóg, D., Kmiecik, M. (2023). Supporting the inventory management in the manufacturing company by chatgpt. LogForum, 19(4). 535-554. doi.org/10.17270/ J.LOG.2023.917
  • 46. Verma, M. (2023). Integration of AI-Based chatbot (ChatGPT) and supply chain management solution to enhance tracking and queries response. International Journal for Science and Advance Research In Technology, 6, 16-20
  • 47. Voβ, S. (2023, September). Successfully Using ChatGPT in Logistics: Are We There Yet? International Conference on Computational Logistics. Cham: Springer Nature Switzerland, pp. 3-17. doi.org/10.1007/978-3-031-43612-3_1
  • 48. Wamba, S.F., Guthrie, C., Queiroz, M.M., Minner, S. (2023a). ChatGPT and generative artificial intelligence: an exploratory study of key benefits and challenges in operations and supply chain management. International Journal of Production Research, 1-21. doi.org/10.1080/00207543.2023.2294116
  • 49. Wamba, S.F., Queiroz, M.M., Jabbour, C.J.C., Shi, C.V. (2023b). Are both generative AI and ChatGPT game changers for 21st-Century operations and supply chain excellence? International Journal of Production Economics, 265, 109015. doi.org/10.1016/j.ijpe.2023.109015
  • 50. Wang, X., Wu, X. (2024). Can ChatGPT Serve as a Multi-Criteria Decision Maker? A Novel Approach to Supplier Evaluation. ICASSP 2024-2024 IEEE International Conference 312 A. Maryniak, K. Pogorzelec-Glaser on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 10281-10285. 10.1109/ICASSP48485.2024.10447204
  • 51. Wen, L., Yang, X., Fu, D., Wang, X., Cai, P., Li, X., Shi, B. (2023). On the road with gpt-4v (ision): Early explorations of visual-language model on autonomous driving. arXiv preprint arXiv:2311.05332. doi.org/10.48550/arXiv.2311.05332
  • 52. Yenduri, G., Ramalingam, M., Selvi, G.C., Supriya, Y., Srivastava, G., Maddikunta, P.K. R., Gadekallu, T.R. (2024). Gpt (generative pre-trained transformer) - a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. IEEE Access, 12, 54608-54649, 10.1109/ACCESS.2024.3389497
  • 53. Younis, H., Sundarakani, B., Alsharairi, M. (2022). Applications of artificial intelligence and machine learning within supply chains: systematic review and future research directions. Journal of Modelling in Management, 17(3), 916-940. doi.org/10.1108/JM2-12-2020-0322
  • 54. Zhang, C., Lu, J., Zhao, Y. (2024). Generative pre-trained transformers (GPT)-based automated data mining for building energy management: Advantages, limitations and the future. Energy and Built Environment, 5(1), 143-169. doi.org/10.1016/j.enbenv. 2023.06.005
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f883da04-6a1f-47de-bd8f-ac71e1b1481a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.