Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Enhancement of self-leveling mortar properties using carbon dots: synthesis, characterization, and mechanisms
Języki publikacji
Abstrakty
Nanomateriały węglowe, takie jak nanorurki węglowe [CNT], grafen oraz tlenek grafenu [GO], były szeroko badane w kontekście poprawy właściwości materiałów cementowych. Niemniej jednak ich wysoki koszt, trudności związane z równomiernym rozproszeniem w matrycy oraz ograniczona kompatybilność z fazą cementową stanowią istotne bariery dla ich praktycznego zastosowania. Alternatywę stanowią kropki węglowe [CDs] – nowa klasa nanomateriałów węglowych – które dzięki niskiemu kosztowi, nietoksyczności, bardzo dobrej rozpuszczalności w wodzie oraz prostemu procesowi syntezy, wykazują duży potencjał aplikacyjny. W niniejszym badaniu przeanalizowano wpływ dodatku kropek węglowych na właściwości zaprawy samopoziomującej [SLM], ze szczególnym uwzględnieniem ciekłości, wytrzymałości na ściskanie i zginanie, skurczu oraz odporności na ścieranie. Kropki węglowe zostały zsyntetyzowane jednoetapową metodą hydrotermalną, a następnie wprowadzone do zaprawy w różnych dawkach. Uzyskane wyniki doświadczalne wykazały, że dodatek kropek węglowych istotnie poprawia ciekłość oraz właściwości mechaniczne zaprawy. Optymalna dawka, wynosząca 3o/ooo, skutkowała najwyższymi wartościami wytrzymałości na ściskanie i zginanie. Dodatkowo stwierdzono, że kropki węglowe efektywnie ograniczają skurcz oraz zwiększają odporność zaprawy na ścieranie. Analiza mikrostrukturalna wykazała, że obecność kropek węglowych sprzyja intensyfikacji procesu tworzenia żelu C-S-H, co prowadzi do powstania gęstszej i bardziej jednorodnej mikrostruktury matrycy cementowej. W efekcie notuje się znaczącą poprawę zarówno właściwości mechanicznych, jak i trwałości materiału. Podsumowując, przeprowadzone badania potwierdzają, że kropki węglowe stanowią ekonomiczny i zrównoważony dodatek do modyfikacji materiałów cementowych, oferując realną alternatywę dla droższych nanomateriałów węglowych.
Carbon-based nanomaterials, such as carbon nanotubes [CNTs], graphene, and graphene oxide [GO], have been widely investigated for enhancing the properties of cement-based materials. However, their high cost, dispersion challenges, and compatibility issues with cement matrices limit their practical applications. In contrast, carbon dots [CDs], a novel class of carbon-based nanomaterials, offer a promising alternative due to their low cost, non-toxicity, excellent water solubility, and facile synthesis. This study investigates the effects of CDs on the performance of self-leveling mortar [SLM], with a focus on fluidity, mechanical properties: compressive and flexural strengths, shrinkage, and abrasion resistance. CDs were synthesized via a one-step hydrothermal method and incorporated into SLM at varying dosages. The experimental results show that the addition of CDs significantly improves the fluidity and mechanical properties of SLM, with the optimal dosage [3o/ooo] yielding the highest compressive and flexural strengths. Furthermore, CDs effectively reduce the shrinkage and enhance the abrasion resistance of SLM. Microstructural analysis revealed that CDs promote the formation of calcium silicate hydrate C-S-H gel, leading to a denser and more stable matrix, which contributes to improved mechanical performance and durability. Overall, this study highlights that CDs are a cost-effective and sustainable additive for enhancing the performance of cement-based materials, offering a viable alternative to more expensive nanomaterials.
Wydawca
Czasopismo
Rocznik
Tom
Strony
75--90
Opis fizyczny
Bibliogr. 63 poz., il., tab.
Twórcy
autor
- School of Materials and Construction, Mianyang Polytechnic, Sichuan Mianyang
autor
- School of Materials and Construction, Mianyang Polytechnic, Sichuan Mianyang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan, P. R. China
autor
- School of Materials and Construction, Mianyang Polytechnic, Sichuan Mianyang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan, P. R. China
autor
- School of Materials and Construction, Mianyang Polytechnic, Sichuan Mianyang
autor
- School of Materials and Construction, Mianyang Polytechnic, Sichuan Mianyang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan, P. R. China
Bibliografia
- 1. J. Yang, L. Liu, Q. Liao, J. Wu, J. Li, L. Zhang, Effect of superabsorbent polymers on the drying and autogenous shrinkage properties of selfleveling mortar. Constr. Build. Mater. 201 401407 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.197
- 2. M. A. S. Anjos, T. R. Araújo, R. L. S. Ferreira, E. C. Farias, A. E. Martinelli, Properties of selfleveling mortars incorporating a highvolume of sugar cane bagasse ash as partial Portland cement replacement. J. Build. Eng. 32 101836 (2020). https://doi.org/10.1016/j.jobe.2020.101694
- 3. G. Barluenga, F. HernándezOlivares, Selflevelling cement mortar containing grounded slate from quarrying waste. Constr. Build. Mater. 24 (9) 16011607 (2010). https://doi.org/10.1016/j.conbuildmat.2010.02.033
- 4. Q. Wang, R. Jia, A novel gypsumbased selfleveling mortar produced by phosphorus building gypsum. Constr. Build. Mater. 226 1120 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.289
- 5. M. Du, H. Jing, Y. Gao, H. Su, H. Fang, Carbon nanomaterials enhanced cementbased composites: advances and challenges. Nanotechnol. Rev. 9 (1) 115135 (2020). https://doi.org/10.1515/ntrev-2020-0011
- 6. C. F. Nascimento, F. B. Barros, R. C. Manta, H. C. B. Nascimento, N. B. Lima, E. C. Costa, K. G. B. Alves, Y. V. Póvoas, E. C. Monteiro, N. B. D. Lima, Enhancing the mechanical performance of plastering mortars with low levels of multilayer graphene and their chemical, structural, and microstructural characteristics. J. Build. Eng. 80 104062 (2023). https://doi.org/10.1016/j.jobe.2023.107966
- 7. P. Rovnaník, H. Šimonová, L. Topolář, P. Bayer, P. Schmid, Z. Keršner, Carbon nanotube reinforced alkaliactivated slag mortars. Constr. Build. Mater. 119 223229 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.051
- 8. B. Díaz, B. Guitián, X. R. Nóvoa, C. Pérez, Analysis of the microstructure of carbon fibre reinforced cement pastes by impedance spectroscopy. Constr. Build. Mater. 243 118151 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118207
- 9. T. S. Qureshi, D. K. Panesar, Impact of graphene oxide and highly reduced graphene oxide on cement based composites. Constr. Build. Mater. 206 7183 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.176
- 10. J. Wei, Z. Jia, Y. Wang, Y. Jiang, Z. Miao, Y. Zhou, H. Zhang, Enhanced thermoelectric performance of low carbon cementbased composites by reduced graphene oxide. Energy Build. 250 111261 (2021). https://doi.org/10.1016/j.enbuild.2021.111279
- 11. Y. Yao, H. Lu, Mechanical properties and failure mechanism of carbon nanotube concrete at high temperatures. Constr. Build. Mater. 297 123820 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123782
- 12. L. Sun, Z. Yan, Y. Duan, J. Zhang, B. Liu, Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene. Dent. Mater. 34 (6) e115e127 (2018). https://doi.org/10.1016/j.dental.2018.02.006
- 13. M.-L. Cao, H.-X. Zhang, C. Zhang, Effect of graphene on mechanical properties of cement mortars. J. Cent. South Univ. 23 (4) 919925 (2016). https://doi.org/10.1007/s11771-016-3139-4
- 14. Y. Wang, J. Yang, D. Ouyang, Effect of Graphene Oxide on Mechanical Properties of Cement Mortar and its Strengthening Mechanism. Materials 12 (22) 3673 (2019). https://doi.org/10.3390/ma12223753
- 15. H. Zeng, Y. Lai, S. Qu, F. Yu, Exploring the effect of graphene oxide on freeze-thaw durability of airentrained mortars. Constr. Build. Mater. 324 126559 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126708
- 16. R. Qiang, S. Yang, K. Hou, J. Wang, Synthesis of carbon quantum dots with green luminescence from potato starch. New J. Chem. 43 (27) 1082610833 (2019). https://doi.org/10.1039/C9NJ02291K
- 17. Z. Kang, S.-T. Lee, Carbon dots: advances in nanocarbon applications. Nanoscale 11 (41) 1921419224 (2019). https://doi.org/10.1039/C9NR05647E
- 18. H. Luo, N. Papaioannou, E. Salvadori, M. M. Roessler, G. Ploenes, E. R. H. van Eck, L. C. Tanase, J. Feng, Y. Sun, Y. Yang, M. Danaie, A. Belen Jorge, A. Sapelkin, J. Durrant, S. D. Dimitrov, M.-M. Titirici, Manipulating the Optical Properties of Carbon Dots by FineTuning their Structural Features. Chem. Sus. Chem. 12 (19) 44324441 (2019). https://doi.org/10.1002/cssc.201901795
- 19. V. Sharma, P. Tiwari, S. M. Mobin, Sustainable carbondots: recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 5 (45) 89048924 (2017). https://doi.org/10.1039/C7TB02484C
- 20. T. Bhattacharya, G. H. Shin, J. T. Kim, Carbon Dots: Opportunities and Challenges in Cancer Therapy. Pharmaceutics 15 (3) 552 (2023). https://doi.org/10.3390/pharmaceutics15031019
- 21. H. Liu, X. Zhong, Q. Pan, Y. Zhang, W. Deng, G. Zou, H. Hou, X. Ji, A review of carbon dots in synthesis strategy. Coord. Chem. Rev. 498 215655 (2024). https://doi.org/10.1016/j.ccr.2023.215468
- 22. C. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 6 (23) 1901316 (2019). https://doi.org/10.1002/advs.201901316
- 23. L. Tian, Z. Li, P. Wang, X. Zhai, X. Wang, T. Li, Carbon quantum dots for advanced electrocatalysis. J. Energy Chem. 55 279294 (2021). https://doi.org/10.1016/j.jechem.2020.06.057
- 24. C. He, T. Sun, X. Wang, H. He, S. E, Development of high-dispersion CLDH/carbon dot composites to boost chloride binding of cement. Cem. Concr. Compos. 152 105574 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105669
- 25. H. He, S. E. T. Wen, J. Yao, X. Wang, C. He, Y. Yu, Employing novel N-doped graphene quantum dots to improve chloride binding of cement. Constr. Build. Mater. 401 131981 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132944
- 26. W.-J. Long, Y. Yu, C. He, A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chin. Chem. Lett. 35 (6) 107256 (2024). https://doi.org/10.1016/j.cclet.2023.108943
- 27. H. Shan, S. E, R. Zhao, Y. Miao, Z. Wang, H. He, C. He, Effect of carbon dots with different sizes on chloride binding of cement. Constr. Build. Mater. 425 131894 (2024). https://doi.org/10.1016/j.conbuildmat.2024.136103
- 28. H. He, S. E. D. Lu, Y. Hu, C. Yan, H. Shan, C. He, Deciphering size-induced influence of carbon dots on mechanical performance of cement composites. Constr. Build. Mater. 425 131915 (2024). https://doi.org/10.1016/j.conbuildmat.2024.136030
- 29. Y. Gao, Z. Qiu, J. Zhao, H. He, B. Wang, A comprehensive review on the applications of carbon dots in civil engineering materials. J. Mater. Sci. 60 (7) 32273252 (2025). https://doi.org/10.1007/s10853-025-10656-5
- 30. W.-J. Long, A.-N. Zhong, S.-Y. Zheng, C. He, Effects of a novel carbon nanomaterial on hydration, mechanics, and chloride binding of cement composites. Carbon 221 2235 (2024). https://doi.org/10.1016/j.carbon.2024.118933
- 31. Z. G. Khan, P. O. Patil, A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols. Microchem. J. 157 105009 (2020). https://doi.org/10.1016/j.microc.2020.105011
- 32. M. Saikia, T. Das, N. Dihingia, X. Fan, L. F. O. Silva, B. K. Saikia, Formation of carbon quantum dots and graphene nanosheets from different abundant carbonaceous materials. Diam. Relat. Mater. 106 107845 (2020). https://doi.org/10.1016/j.diamond.2020.107813
- 33. Y. Wu, C. Li, H. C. van der Mei, H. J. Busscher, Y. Ren, Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics 10 (6) 651 (2021). https://doi.org/10.3390/antibiotics10060623
- 34. H. Eskalen, Influence of carbon quantum dots on electro-optical performance of nematic liquid crystal. Appl. Phys. A 126 (9) 707 (2020). https://doi.org/10.1007/s00339-020-03906-7
- 35. Y. Deng, J. Qian, Y. Zhou, Solvothermal Synthesis and Inkjet Printing of Carbon Quantum Dots. Chem. Select 5 (47) 1493014934 (2020). https://doi.org/10.1002/slct.202003487
- 36. G. Kalaiyarasan, J. Joseph, P. Kumar, Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection. ACS Omega 5 (35) 2227822288 (2020). https://doi.org/10.1021/acsomega.0c02627
- 37. X.-D. Mai, T. Thi Kim Chi, T.-C. Nguyen, V.-T. Ta, Scalable synthesis of highly photoluminescence carbon quantum dots. Mater. Lett. 268 127639 (2020). https://doi.org/10.1016/j.matlet.2020.127595
- 38. E. Budak, D. Erdoğan, C. Ünlü, Enhanced fluorescence of photosynthetic pigments through conjugation with carbon quantum dots. Photosynth. Res. 147 (1) 110 (2020). https://doi.org/10.1007/s11120-020-00786-z
- 39. L.-M. Shen, J. Liu, New development in carbon quantum dots technical applications. Talanta 156-157 245256 (2016). https://doi.org/10.1016/j.talanta.2016.05.028
- 40. S. Ren, B. Liu, G. Han, H. Zhao, Y. Zhang, Surface chemistry in calcium capped carbon quantum dots. Nanoscale 13 (28) 1214912156 (2021). https://doi.org/10.1039/D1NR02763H
- 41. A.S. Rasal, S. Yadav, A. Yadav, A. A. Kashale, S. T. Manjunatha, A. Altaee, J.-Y. Chang, Carbon Quantum Dots for Energy Applications: A Review. ACS Appl. Nano Mater. 4 (7) 65156541 (2021). https://doi.org/10.1021/acsanm.1c01372
- 42. X. Xiao, J. Li, Q. Meng, X. Hou, Y. Liu, X. Wang, W. Wang, S. Lu, Y. Li, Y. Mao, T. Li, Reuse of by-product gypsum with solid wastes-derived sulfoaluminate cement modification for the preparation of self-leveling mortar and influence mechanism of H3PO4. Constr. Build. Mater. 411 141643 (2024). https://doi.org/10.1016/j.conbuildmat.2023.134298
- 43. P. Zhao, B. Jin, Q. Zhang, R. Peng, Facile synthesis of quantum dots/TiO2 photocatalyst with superior photocatalytic activity: the effect of carbon nitride quantum dots and N-doped carbon dots. Res. Chem. Intermed. 47 (12) 52295247 (2021). https://doi.org/10.1007/s11164-021-04595-4
- 44. P. Zhao, B. Jin, Q. Zhang, R. Peng, High-Quality Carbon Nitride Quantum Dots on Photoluminescence: Effect of Carbon Sources. Langmuir 37 (5) 17601767 (2021). https://doi.org/10.1021/acs.langmuir.0c02966
- 45. P. Zhao, B. Jin, J. Yan, R. Peng, Fabrication of recyclable reduced graphene oxide/graphitic carbon nitride quantum dot aerogel hybrids with enhanced photocatalytic activity. RSC Adv. 11 (56) 3514735155 (2021). https://doi.org/10.1039/D1RA06347B
- 46. M. Chougan, E. Marotta, F. R. Lamastra, F. Vivio, G. Montesperelli, U. Ianniruberto, A. Bianco, A systematic study on EN-998-2 premixed mortars modified with graphene-based materials. Constr. Build. Mater. 227 116703 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116701
- 47. S. S. A. Suseela Alla, Investigation on fluidity, microstructure, mechanical and durability properties of snail shell based graphene oxide cement composite material. Constr. Build. Mater. 362 129767 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129767
- 48. S. K. Adhikary, Ž. Rudžionis, R. Rajapriya, The Effect of Carbon Nanotubes on the Flowability, Mechanical, Microstructural and Durability Properties of Cementitious Composite: An Overview. Sustainability 12 (20) 8440 (2020). https://doi.org/10.3390/su12208362
- 49. X. Liu, T. Fang, J. Zuo, Effect of Nano-Materials on Autogenous Shrinkage Properties of Cement Based Materials. Symmetry 11 (9) 1114 (2019). https://doi.org/10.3390/sym11091144
- 50. I. Fonseka, D. Mohotti, K. Wijesooriya, C.-K. Lee, P. Mendis, Influence of Graphene oxide on abrasion resistance and strength of concrete. Constr. Build. Mater. 404 134586 (2023). https://doi.org/10.1016/j.conbuildmat.2023.133280
- 51. A. Anwar, X. Liu, L. Zhang, Nano-cementitious composites modified with Graphene Oxide – a review. Thin-Walled Struct. 183 110590 (2023). https://doi.org/10.1016/j.tws.2022.110326
- 52. W. Guo, J. Hu, Y. Wang, Z. Zhang, S. Yin, J. Wei, Q. Yu, Preparation and performance of conductive mortar based on lightweight conductive aggregates. Constr. Build. Mater. 156 340350 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.186
- 53. S. Wang, P. Zhao, Y. Tian, J. Liu, Effects of C-S-H Seed Prepared by Wet Grinding on the Properties of Cement Containing Large Amounts of Silica Fume. Polymers 16 (19) 4578 (2024). https://doi.org/10.3390/polym16192769
- 54. W. Sekkal, A. Zaoui, M. Benzerzour, N. Abriak, Role of porosity on the stiffness and stability of (001) surface of the nanogranular C-S-H gel. Cem. Concr. Res. 87 4552 (2016). https://doi.org/10.1016/j.cemconres.2016.04.014
- 55. X. Kong, R. Wang, T. Zhang, R. Sun, Y. Fu, Effects of graphene oxygen content on durability and microstructure of cement mortar composites. Constr. Build. Mater. 354 129063 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129121
- 56. S. Lv, S. Ting, J. Liu, Q. Zhou, Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. Cryst. Eng. Comm. 16 (36) 83508357 (2014). https://doi.org/10.1039/C4CE00684D
- 57. C. Li, Chloride permeability and chloride binding capacity of nano-modified concrete. J. Build. Eng. 41 102429 (2021). https://doi.org/10.1016/j.jobe.2021.102419
- 58. M. Wang, H. Yao, Comparison Study on the Adsorption Behavior of Chemically Functionalized Graphene Oxide and Graphene Oxide on Cement. Materials 13 (15) 3336 (2020). https://doi.org/10.3390/ma13153274
- 59. C. Liu, X. Huang, Y.-Y. Wu, X. Deng, Z. Zheng, Z. Xu, D. Hui, Advance on the dispersion treatment of graphene oxide and the graphene oxide modified cement-based materials. Nanotechnol. Rev. 10 (1) 3449 (2021). https://doi.org/10.1515/ntrev-2021-0003
- 60. T. M. Sheikh, M. P. Anwar, K. Muthoosamy, J. Jaganathan, A. Chan, A. A. Mohamed, The mechanics of carbon-based nanomaterials as cement reinforcement - A critical review. Constr. Build. Mater. 303 124399 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124441
- 61. W.-J. Long, J.-J. Wei, H. Ma, F. Xing, Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites. Nanomaterials 7 (12) 451 (2017). https://doi.org/10.3390/nano7120407
- 62. Chen, F. Qu, Z. Sun, S. P. Shah, W. Li, Carbon sequestration, performance optimization and environmental impact assessment of functional materials in cementitious composites. J. CO2 Util. 90 102040 (2024). https://doi.org/10.1016/j.jcou.2024.102986
- 63. Y. Lin, H. Du, Graphene reinforced cement composites: A review. Constr. Build. Mater. 265 120609 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120312
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f883632f-1a5a-4391-8b4c-73610ba06441
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.