PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the Performance of Natural Fiber Reinforced Composites for Wind Turbine Blade Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The availability of some form of energy is essential for the human survival and social development. However, the way energy has been generated within the last century has brought forward the quest for the generation of energy without polluting the environment, which is nowadays considered to be the greatest global challenge. The materials used for wind turbine blades can be classified under this challenge of polluting the environment. One of the materials expected to reduce this problem is natural fiber reinforced composite (FRC). Thus, the focus of this paper was to evaluate the potential of different natural FRC materials for small wind turbine blade application. Eleven different natural fibers reinforced composite in epoxy resin were studied. A modified Halphin-Tsai semi-empirical model was used to compute the physical properties of the composites, since it has a good agreement with the experimental results. Stress, deformation, and weight of wind turbine blade under different loadings were analyzed aimed to search for a fiber type that may extend the life span of the blade. Finally, flap wise and edge wise, the longitudinal and torsional natural frequencies were computed numerically by using the finite element method in the Qblade software (QFEM) under different mode types and the effects were analysed. Upon comparing the results with a common composite material for wind turbine blade (E-glass/epoxy), it was observed that the selected natural fiber composites have equivalent and better mechanical performance. The environmental friendliness of natural fibers, i.e. biodegradability, constitutes their advantage as materials of wind turbine blades.
Twórcy
  • Dept. of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
  • School of Mechanical and Industrial Engineering, Wollo University, Ethiopia
autor
  • Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
  • Dept. of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
Bibliografia
  • 1.Baoqing X. and De T. 2012. Simulation and test of the blade models’ output characteristics of wind turbine, Energy Procedia, 17, 1201–1208.
  • 2.Hansen M.O.L., Sørensen J.N., Voutsinas S., Sørensen N. and Madsen H.A. 2006. State of the art in wind turbine aerodynamics and aeroelasticity, Prog. Aerosp. Sci. 42, 285-330.
  • 3.Kong C., Bang J. and Sugiyama Y. 2005. Structural investigation of composite wind turbine blade considering various load cases and fatigue life, Energy, 30, 2101–2114.
  • 4.Auger D., Wang Q., Trevelyan J., Huang S. and Zhao W. 2018. Investigating the quality inspection process of offshore wind turbine blades using B-spline surfaces, Meas. 115, 162–172.
  • 5.Raon P.D., Rao D.V, Naidu A.L. and Bahubalendruni M.V.A.R. 2015. Mechanical Properties of Banana fiber Reinforced Composites and Manufacturing Techniques: A Review, Int. J. Res. Dev Technol. 8(5), 2349 – 3585.
  • 6.Kalagi G., Patil R. and Nayak N. 2016. Natural fiber reinforced polymer composite materials for wind turbine blade applications, Int. J. Scie. Dev. Res. 1(9), 2455-2631.
  • 7.Deshmukh A.V. and Shekhawat S.P. 2017. Analysis on wind turbine blade using composite materials, Int. J. Innov. Res. Sci. Eng. Technol. 6(1), 412–418.
  • 8.Yeh M.K., Cheng Y.C. and Wang C.H. 2015. Finite element stress analysis of wind blade structure under wind pressure. Taiwan Wind Energy Conference, Taipei, Taiwan, Paper No. SI_07 (in Chinese)
  • 9.Tartibu L.K., Kilfoil M. and Merwe A.J. van Der 2012. Vibration analysis of a variable length blade wind turbine, Int. J. Adv. Eng. Technol. 4(1), 630–639.
  • 10.Osoka E.C. and Onukwuli O.D. 2018. A modified Halpin-Tsai model for estimating the modulus of natural fiber reinforced composites, Int. J. Eng. Sci. Invent. 7(5), 63-70.
  • 11.Akil H.M., Omar M.F., Mazuki A.A.M., Safiee S., Ishak Z.A.M. and Abu Bakar A. 2011. Kenaf fiber reinforced composites: A review, Mater. Des. 32, 4107–4121.
  • 12.Brouwer W.D.R. 2001. Natural fibre composites in structural components: Alternative applications for sisal? Technical report no. 14, The Ntherlands.
  • 13.Fidelis, M.E.A., Pereira, T.V.C., Gomes O. da F.M., Silva de A. and Filho, R.D.T. 2013. The effect of fiber morphology on the tensile strength of natural fibers, J. Mater. Res. Technol. 2, 149–157.
  • 14.Kaw A. 2006. Mechanics of composite materials, 2nd ed. Taylor & Francis Group, NY, USA.
  • 15.Alene A. 2013. Design and analysis of bamboo and E-glass fiber reinforced epoxy hybrid composite for wind turbine blade shell, Master Thesis, Addis Ababa University, Ethiopia.
  • 16.ICE 61400-1, International Standard: Wind Turbines – Part 1: Design requirements, 2005.
  • 17.Qblade website: http://www.q-blade.org/: Last visited, 2019-09-20.
  • 18.Marten J.W., Pechlivanoglou G., Nayeri C.N. and Paschereit C.O. 2013. Qblade: An open source tool for design and simulation of horizontal and vertical axis wind turbines, Int. J. Emerging Technol. Adv. Eng. 3(3), 264-269.
  • 19.Corke T. and Nelson R. 2018. Wind energy design, 1st ed. CRC Press, NY, USA.
  • 20.Eker B., Akdogan A. and Vardar A. 2006. Using of composite materials in wind turbine blades, J. Appl. Sci. 6(14) 2917–2921.
  • 21.Larsen G.C., Hansen M.H., Baumgart A. and Carlen I. 2002. Modal analysis of wind turbine blades. Technical Report, Risø-R-1181. Risø National Laboratory, Denmark.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f87b35fd-0441-47da-990a-d091ca33badc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.