PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research into morphology and phase structure in the surface of Al-Si alloy modified by yttrium oxide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using methods of physical material studies (scanning electron microscopy and micro X-ray spectral analysis), a study was carried out with focus on alteration of structure and phase composition in surface layers of Al-Si alloy (silumin АК10М2N) treated in electroexplosive alloying with a multiphase plasma jet formed in the process of aluminum foil explosion and carrying particles of Y2O3 weighted powder portion. It was revealed that a porous surface layer with non-homogeneously distributed alloying elements (silicon, yttrium) in it is formed in any conditions of electroexplosive alloying of silumin. Thickness of the modified layer is different, varying 50 to 160 μm, depending on the zone to be examined. The modified surface consists basically of Al, Si and Y. Yttrium in the modified layer is thought to be an indirect evidence of better physical and mechanical properties of the surface layer in comparison with the base material.
Rocznik
Strony
173--177
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Department of Natural Sciences, Siberian State Industrial University, Novokuznetsk, Russia
autor
  • Department of Metals Technology and Aviation Materials, Samara National Research University, Samara, Russia
  • ksv@ssau.ru
autor
  • Department of Natural Sciences, Siberian State Industrial University, Novokuznetsk, Russia
autor
  • Department of Metals Technology and Aviation Materials, Samara National Research University, Samara, Russia
autor
  • Department of Natural Sciences, Siberian State Industrial University, Novokuznetsk, Russia
Bibliografia
  • [1] V. Oliveira, S.P. Sharma, M.F.S.F. de Moura, R.D.F. Moreira, and R.Vilar, “Surface treatment of CFRP composites using femtosecond laser radiation”, Optics and Lasers in Engineering. 94, 37‒43 (2017).
  • [2] J.I. Ahuir-Torres, M.A. Arenas, W. Perrie, and J.de Damborenea, “Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys”, Optics and Lasers in Engineering. 103, 100‒109 (2018).
  • [3] X. Chen,Y. Fang, S. Zhan, J.F. Kelleher, and J. Zhou, “Effects of LSP on micro-structures and residual stresses in a 4 mm CLAM steel weld joints”, Fusion Engineering and Design. 94, 54‒60 (2015).
  • [4] D. Wei, X. Wang, R. Wang, and H. Cui, “Surface modification of 5CrMnMo steel with continuous scanning electron beam process”, Vacuum. 149, 118‒123 (2018).
  • [5] X. Tao, Z. Yao, S. Zhang, J. Liao, and J. Liang, “Investigation on microstructure, mechanical and tribological properties of in-situ (TiB + TiC)/Ti composite during the electron beam surface melting”, Surface and Coatings Technology. 337, 418‒425 (2018).
  • [6] M.-S. Jang, S.W. Ma, J. Song, M. Sung, and Y.-H. Kim, “Adhesion of NCF to oxidized Si wafers after oxygen plasma treatment”, Microelectronics Reliability. 78, 220‒226 (2017).
  • [7] O.F. Farag, “Comparison of the Effect of Plasma Treatment and Gamma Ray Irradiation on PS-Cu nanocomposite films surface”, Results in Physics. 2018.
  • [8] S.Q. Tang, S.J. Qu, A.H. Feng, C. Feng, J. Shen, and D.L. Chen, “Core-multishell globular oxidation in a new TiAlNbCr alloy at high temperatures”, Scientific Reports, 7 (1), 3483 (2017).
  • [9] Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Z.A. Alothman, Y. Yamauchi, Md S.A. Hossain, and Y. Liu, “Microstructure Refinement in W-Y2O3 Alloy Fabricated by Wet Chemical Method with Surfactant Addition and Subsequent Spark Plasma Sintering”, Scientific Reports, 7(1), 6051 (2017).
  • [10] E. Czekaj, J. Zych, Z. Kwak, and A. Garbacz-Klempka, “Quality index of the AlSi7Mg0.3 aluminium casting alloy depending on the heat treatment parameters”, Arch i ves of foundry engineering, 16, 25‒28 (2016).
  • [11] K. Gawdzińska, K. Bryll, and D. Nagolska, “Influence of heat treatment on abrasive wear resistance of silumin matrix composite castings”, Arch. Metall. Mater. 61(1), 177–182 (2016).
  • [12] P. Wang, X. Chen, Q. Pan, B. Madigan, and J. Long, “Laser welding dissimilar materials of aluminum to steel: an overview”, International journal of advanced manufacturing technology. 87, 3081‒3090 (2016).
  • [13] C.F. John, R.C. Paul, S.C.E. Singh, J. Jacobjose, T. Ramkumar, G.S. Hikku, R.K. Sharma, and P. Sengottuvel, “Corrosion behavior of ZrC particles reinforcement with Al-12Si composites by weight loss method using acidic media”, Bull. Pol. Ac.: Tech., 66(1) 9‒16 (2018).
  • [14] S. Valkov, P. Petrov, R. Lazarova, R. Bezdushnyi, and D. Dechev, “Formation and characterization of Al–Ti–Nb alloys by electron-beam surface alloying”, Applied Surface Science. 389, 768‒774 (2018).
  • [15] H. Xia, C. Zhang, P. Lv, J. Cai, Y. Jin, and Q. Guan, “Surface alloying of aluminum with molybdenum by high-current pulsed electron beam”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 416, 9‒15 (2018).
  • [16] Y. Ivanov, K. Alsaraeva, V. Gromov, S. Konovalov, and O. Semina, “Evolution of Al-19.4Si alloy surface structure after electron beam treatment and high cycle fatigue”, Materials Science and Technology (United Kingdom), 31(13a), 1523‒1529 (2015).
  • [17] A.R. Osipov, V.A. Borisov, G.I. Suprunov, V.A. Mukhin, A.L. Ivanov, S.S. Sigaeva, E.A. Anoshkina, V.L. Temerev, A.A. Hohlov, and P.G. Tsyrul’Nikov, “Catalytic coatings for improving the environmental safety of internal combustion engine”, Procedia Engineering. 152, 59‒66 (2016).
  • [18] D.A. Romanov, E.A. Budovskikh, Y.D. Zhmakin, and V.E. Gromov, “Surface modification by the EVU 60/10 electroexplosive system” Steel in translation, 41(6), 464–468 (2011).
Uwagi
EN
This work was supported by State Task No. 3.1283.2017/4.6 of the Ministry of Education and Science of the Russian Federation.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f86a2287-c7f7-49d0-9581-3418b7b5f894
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.