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Abstract

In this paper we investigate the hybridization of two swarm intelligence algorithms;
namely, the Artificial Bee Colony Algorithm (ABC) and Particle Swarm Optimization
(PSO). The hybridization technique is a component-based one, where the PSO algorithm
is augmented with an ABC component to improve the personal bests of the particles.
Three different versions of the hybrid algorithm are tested in this work by experiment-
ing with different selection mechanisms for the ABC component. All the algorithms are
applied to the well-known CECO05 benchmark functions and compared based on three dif-
ferent metrics, namely, the solution reached, the success rate, and the performance rate.

1 Introduction

Both the artificial bee colony (ABC) and parti-
cle swarm optimization (PSO) algorithms are two
population-based algorithms developed in the past
15 years. Both algorithms are nature-inspired as
PSO mimics the behavior of a group of birds or a
school of fish looking for food while ABC mim-
ics the behavior of honey bees when locating food
sources. ABC and PSO have been proven through
many different studies [1, 2, 3, 4, 5] to be very ef-
ficient in function optimization and were applied to
many engineering applications.

The aim of this work is to combine these two
algorithms in order to gain benefit from their good
characteristics. In [6], it was shown that ABC has
an excellent performance on separable functions
and good competitive performance on multi-modal
and hybrid functions. On the other hand, it was
shown that the standard particle swarm optimiza-
tion (SPSO) algorithm has the best performance on
uni-modal functions.

To the best of our knowledge, the only previ-
ous attempt to combine these two algorithms was

proposed in [7]. However, the algorithm was a co-
operative rather than a hybrid one. The idea was to
have two separate ABC and PSO swarms running
in parallel and exchanging information during the
search. In this work, the hybridization is attempted
at the component level in order to come up with a
hybrid algorithm.

The paper is organized as follows: Sections 2
and 3 cover the basic ABC and PSO algorithms.
The hybrid algorithm is introduced in Section 4.
Results are presented and discussed in Section 5.

2 Artificial Bee Colony

The ABC algorithm was first proposed in [8].
The algorithm was inspired by the method adopted
by a swarm of honey bees to locate food sources.
There are two different honey bee groups that share
knowledge in order to successfully locate such
sources. First, there are the employed bees that are
currently exploiting a food source. Second, there
are the unemployed bees that are continuously look-
ing for a food source. Unemployed bees are divided
into scout bees that search around the nest and on-
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lookers that wait at the nest and establish communi- )
cation with the employed bees. pi= fiti ’ @)

Algorithm 1 The ABC algorithm
Require: Max_Cycles,S,,limit

1: Initialize the food sources

2: Evaluate the food sources

3: Cycle=1

4: while Cycle < Max_Cycles do

5:  Produce new solutions using employed bees as in eq. 1
6:  Evaluate the new solutions and apply greedy selection
7:  Calculate the probability using eq. 2
8: Produce new solutions using onlooker bees as in eq. 1
9:  Evaluate the new solutions and apply greedy selection
10: for All solutions do
11: if A solution has not been improved for /imit cycles
then
12: Generate a new random solution a scout bee as in
eq. 3
13: end if
14: end for
15: Memorize the best solution found so far

16: Cycle = Cycle + 1
17: end while
18: return best solution

This algorithm was applied to multidimensional
and multi-modal function optimization in [8, 9].
The swarm is divided into employed bees, scouts
and onlookers. S, solutions to the problem are ran-
domly initialized in the function domain and re-
ferred to as food sources. A number of employed
bees, set as the number of food sources and half the
colony size, are used to find new food sources using
the following equation:

Vij = Xij +Gij X (xij — X)), (1)

where x;; refers to problem variable j in food source
number i. j is a randomly selected number in [1,D]
and D is the number of dimensions. ¢;; is a ran-
dom number uniformly distributed in the range [-
1,1] while k is the index of a randomly chosen solu-
tion. Both v; and x; are then compared against each
other and the employed bee exploits the better food
source, which is a greedy selection mechanism.

Onlooker bees next choose a random food
source according to the probability given in equa-
tion 2. Then, each onlooker bee tries to find a better
food source around the selected one using equation
1.

5,
Y. fit;
=1

where fit; is the fitness of the i’ food source.

Finally, if a certain food source i cannot be im-
proved for a predetermined number of cycles, re-
ferred to as limit, this food source is abandoned.
The employed bee that was exploiting this food
source becomes a scout that looks for a new food
source by randomly searching the problem domain
using the following equation:

Xij = lbj —+r X (I/tb, — lbj), (3)

where [b; and ub; are the lower and upper bounds
for problem variable j, and r is a random number
uniformly distributed in the range [0,1]. The ABC
algorithm is shown in Algorithm 2.

3 Particle Swarm Optimization

PSO is a population-based method, where the
population is referred to as a swarm. The swarm
consists of a number of individuals called particles.
Each particle i in the swarm holds: (i) the current
position x;, which represents a solution to the prob-
lem, (ii) the current velocity v;, (iii) the best po-
sition pbest;, the one associated with the best ob-
jective function value the particle has achieved so
far, and (iv) the neighborhood best position nbest;,
the one associated with the best objective func-
tion value found in the particle’s neighborhood.
The choice of nbest; depends on the neighborhood
topology adopted by the swarm, different neighbor-
hood topologies have been studied in [10].

In traditional PSO, each particle adjusts its own
position in every iteration in order to move towards
its best position and the neighborhood best accord-
ing to the following equations:

r+1

1 t
Vij :wvij—kclrl(pbestij— )

J

1
ij

+cory(nbest]; — x
o=+ (5)
for j € {1...D} where D is the number of dimen-

sions, i € {1...n} where n is the number of par-
ticles, ¢ is the iteration number, w is the inertia
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weight, r; and r, are two random numbers uni-
formly distributed in the range [0,1), and ¢; and ¢;
are the acceleration factors.

After changing its position, each particle up-
dates its personal best position using (assuming a
minimization problem):

pbest; if f(pbest)) < f(xi"!),
x4t f(pbest) > f(xit).

(6)
Finally, the global best of the swarm is updated us-
ing the following equation:

1
pbest. ™' =

t[+1

ghest'" =arg min f (pbest! ™). @)

pbest. "

This model is referred to as the lbest (local best)
model. Another simple model is the gbest (global
best) model, which is the case when the particle’s
neighborhood is defined as the whole swarm. The
basic PSO algorithm is shown in Algorithm 3.

Algorithm 2 The PSO algorithm

Require: Max_Function_Evaluations,n,w,cy,c;
: Initialize the swarm
: Evaluate the swarm
Max_Iterations = %W
: Iter_number = 1
. while Iter_number < Max_Iterations do
for every particle i do
Update v; asin eq. 4
Update x; as in eq. 5
Update pbest; asin eq. 6
end for
Update gbest
Iter_number = Iter_number + 1
: end while
: return ghbest as in eq. 7
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4 The Hybrid Algorithm

The aim behind the hybrid algorithm is to effec-
tively mix components from both ABC and SPSO
in order to have an algorithm that easily solves sep-
arable problems as ABC while having a rotationally
invariant behavior as SPSO at the same time. The
reason for ABC being so good on separable func-
tions is that its update equation only updates a sin-
gle problem variable at a time after which the new
solution is re-evaluated.

4.1 Mixing Approach

The ABC component is added to SPSO after the
main loop. For m trials, a particle i is selected, and
a new candidate solution v is produced using the
ABC update equation. This is done after randomly
selecting another particle k as a neighbor and a ran-
dom problem variable j, hence v is produced as fol-
lows:

v — pbest;;, I# ],
"7 pbest; +d;; x (pbest; — pbest,;), [ = j.
(®)

The new candidate solution v replaces pbest; if it
has a better fitness. The steps for this hybrid ap-
proach is shown in Algorithm 4.1.

Algorithm 3 The ABC-PSO algorithm

Require: Max_Function_Evaluations,n,w,cy,cy,m

1: Initialize the swarm
2: Evaluate the swarm
3: Max_Iterations = Y--F, N“nyiﬁ,ﬁﬁﬁﬁ'j“’ ions
4: Iter_number=1
5: while Iter_number < Max_Iterations do
6:  for every particle i do
7: Update v;
8: Update x;
9: if f(pbest;) < f(x;) then
10: pbest; =x;
11: end if
12: end for
13: Update gbest
14: for m trials do
15: Select a particle i to improve
16: Select a different random particle &
17: Select a random problem variable j
18: Apply ABC update rule to pbest; as in eq. 8
19: Update pbest; and gbest
20: end for
21: Iter number = Iter_number + 1

22: end while
23: return gbest

4.2 Effect of m and the selection scheme

The number of trials m controls how much com-
putational power is given to the ABC component in
the hybrid algorithm. For example, if m equals the
number of particles in the swarm, both SPSO and
the ABC component have an equal share of the al-
lowed number of function evaluations.

Another design decision that affects the perfor-
mance of the hybrid algorithm is how to select a par-
ticle to update. Two appropriate selection schemes
are:
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— Random selection, will be referred to as Hybrid
in the rest of the paper,

— Fitness proportionate selection:

— Higher probability of selecting good parti-
cles, Hybridgp,

— Higher probability of selecting bad particles,
Hybl‘id]Fp.

For fitness proportionate selection, more update at-
tempts could be either targeted towards good or bad
particles. As for random selection, it becomes only
necessary if m < n (the swarm size). However, if
m = n, an update attempt is carried out for every
particle.

5 Results and Discussion

5.1 Experimental Setup

All the algorithms are applied to the CEC05
benchmark functions [11]. This library provides a
class of shifted and/or rotated functions including
uni-modal functions (f1-f5) and multi-modal func-
tions (f6-f14). For all experiments, the termination
criterion is the maximum number of allowable func-
tion evaluations set as 10* x D, where D is the prob-
lem dimensionality. Experiments are carried out for
D =10, 30 and 50 dimensions. For all algorithms,
initial candidate solutions are randomly initialized
using uniform distribution over the specified do-
main. For each function, the reported solution is
the average taken over all 30 different runs.

Performance assessment is based on three met-
rics. First, the solution reached after the allocated
number of function evaluations. Second, the suc-
cess rate defined as the number of successful runs
over the total number of runs (a successful run is
defined as a run where the tested algorithm has
reached a predefined threshold for the function un-
der study). Third, the performance rate, which is
defined as follows:

FEV _avg X total _runs

)

Per formance rate =
success ful _runs

where FEV _avg is the average number of func-
tion evaluations needed to reach the predetermined

threshold taken over the successful runs only. The
threshold values are defined in [11] as 10~ for uni-
modal functions and 10~2 for multi-modal func-
tions.

Experiments use the ABC code available at [12]
and SPSO code (version 2007) available at [13].
The hybrid algorithm is implemented by augment-
ing the available SPSO code with the ABC compo-
nent.

5.2 Parameter Tuning

For ABC, the work in [14] indicated that there
is no need to have a huge colony size in order to
provide good results. The experiments were re-
peated using populations of 20, 40 and 100 bees for
the three problem sizes. It was found that using a
swarm of 40 bees provided the best results on aver-
age for all the dimensions. The recommendations in
[15] were followed by setting the limit parameters
to S, x D, although recent research [14] indicated
that lower values might be needed for more difficult
functions.

For SPSO, the only parameter set is the swarm
size and it was set to 40. The parameter values for
w,c1, and ¢, are already set in the code as 1.193,
1.193, and 0.721 respectively.

5.3 Experimental Results

The results are provided in Table 1 for uni-
modal functions, and Tables 2 and 3 for multi-
modal functions. The best results are highlighted
in bold (to test for the significance of the results,
we used the Mann-Whitney non-parametric statisti-
cal test, where the null hypothesis is rejected with a
95% confidence level).

For uni-modal functions, the results in Table 1
show that all versions of the hybrid algorithm have
a similar performance for a problem size of 10. For
higher problem sizes, there is no clear version that
comes out as the best performer. While the Hybrid
version has a better performance on {5, Hybridgp
has the better performance on f4 and Hybrid;zp has
the better performance on 2.

For multi-modal functions, the results in Tables
2 and 3 show that the Hybrid version is the best per-
former for a problem size of 10. The same behavior
continues for higher problem sizes with the excep-
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Table 1. Results of all the algorithms for the uni-modal CECO05 functions

Benchmark . . . .
Function Size ABC SPSO Hybrid  Hybridrp Hybrid;rp
fl 0 0 0 0 0
0 0 0 0 0
0 3.73 0 0 0 0
2.52 0 0 0 0
5 10 6.41e+05 5.64e+04 9.85e+04 1.02e+05 9.42e+04
2.78e+05 3.27e+04 6.47e+04  8.65¢+04 7.57e+04
f4 29.17 0 0 0 0
41.83 0 0 0 0
f5 86.76 0 0 0 0
100.53 0 0 0 0
f1 1.06e-13 0 0 0 0
1.97e-14 0 0 0 0
” 2.49e+03 0 0 0 0
969.89 0 0 0 0
3 30 6.22e+06 2.21e+05 8.02e+05  6.83e+05 4.68¢+05
1.67e+06  9.53e+04 1.07e+06  4.30e+05 1.58e+05
f4 1.49e¢+04  8.35e-04 8.88 2.26 3.27
5.15e+03  1.29e-03 5.31 2.03 349
f5 1.08e+04  3.44e+03 3.15¢+03  3.42e+03 3.68e+03
1.47e+03 777.42 751.01 668.98 941.01
f1 2.04e-13 0 0 0 0
3.20e-14 0 0 0 0
” 1.61e+04 0 8.00e-07 1.17e-06 0
4.05e+03 0 6.10e-07 1.12e-06 0
3 50 1.08e+07  2.59e+05 4.79¢+05  8.68e+05 6.00e+05
2.65e+06 7.85e+04 1.35¢+05  3.94e+05 2.98e+05
4 6.42e+04 152.51 3.05e+03  1.52¢+03 1.56e+03
1.24e+04 118.64 1.23e+03 636.58 783.63
f5 2.54e+04  8.84e+03 8.16e+03  8.30e+03 9.06e+03
2.54e+03  1.59e+03 1.16e+03  1.25¢+03 1.50e+03
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Table 2. Results of all the algorithms for the multi-modal CECO5 functions, 10 and 30 dimensions

Benchmark . . . .
Function Size ABC SPSO Hybrid Hybridrp Hybrid;rp
6 1.46 39.89 14.90 437.75 271.77
1.63 113.23 56.89 1.12e+03 663.83
7 2.45e-01 4.36e-02  2.75¢-02 6.55e-02 5.08e-02
1.27e-01 1.96e-02  1.43e-02 4.55e-02 3.42e-02
9 0 5.26 0 0 0
0 2.74 0 0 0
£10 28.59 4.59 6.11 6.47 6.34
10 8.29 1.96 2.11 2.29 2.97
fl11 5.38 297 4.67 4.11 4.89
6.04e-01 1.52 7.85e-01 2.11 1.61
f12 299.39 5.97¢+03 210.31 1.40e+03 641.68
177.41 3.00e+03 117.38 1.05e+03 722.03
13 2.19e-01 8.60e-01  2.76e-01 4.23e-01 4.18e-01
8.95e-02  2.18e-01 5.72e-02 1.01e-01 1.92e-01
14 3.34 2.47 2.76 2.85 2.82
2.12e-01  3.93e-01 3.76e-01 3.55e-01 3.72e-01
6 7.49 141.65 341.18 549.57 1.93e+03
10.99 226.24 364.37 1.32e+03 3.15e+03
7 1.23¢-02  2.04e-02  261e-02  2.24e-02 3.62e-02
5.04e-03 1.57e-02  2.67e-02 2.71e-02 4.98e-02
£9 6.06e-14 44.37 0 0 6.23
1.44e-14 10.15 0 0 6.25
10 333.43 46.13 67.80 59.08 68.78
30 68.97 11.91 14.42 22.62 28.93
11 27.94 30.06 28.09 31.31 30.11
1.62 2.85 2.26 2.21 3.39
12 8.55e+03  2.95e+05 1.45e+04  2.20e+04 7.98e+03
3.70e+03  6.28¢+04 4.27e+03 1.03e+04 4.75¢+03
f13 9.44e-01 4.37 1.30 1.51 1.78
1.19¢-01 1.27 1.46¢-01 2.25e-01 6.12e-01
14 12.97 12.44 12.33 12.63 12.66
2.16e-01  3.76e-01  3.53e-01 3.61e-01 3.53e-01

Table 3. Results of all the algorithms for the multi-modal CECOS5 functions, 50 dimensions

Benchmark . . . .
Function Size ABC SPSO Hybrid  Hybridrp Hybrid;rp
6 6.16 219.74 272.91 990.98 886.54
7.76 243.62 324.18 2.16e+03 1.84e+03
7 1.68e-04  9.66e-03  124e-02  1.07e-02 3.85¢-03
1.23e-04 1.61e-02 1.62e-02 1.55e-02 8.65¢-03
9 1.14e-13 119.56 1.22¢-03 1.33e-01 50.88
1.02e-28 25.62 6.69¢-03 3.44¢-01 31.24
10 1.08e+03 130.47 182.04 135.08 209.53
50 102.68 25.06 32.32 53.94 66.77
f11 56.24 57.28 57.15 60.54 60.16
2.23 3.84 2.07 4.07 3.59
f12 3.52e+04 1.60e+06 6.80e+04  6.71e+04 3.39¢+04
1.05e+04 2.94e+05 1.66e+04  2.23e+04 1.83e+04
13 1.63 9.02 2.69 2.67 5.36
1.97e-01 3.51 2.06e-01 3.72e-01 2.13
f14 22.68 22.01 21.87 22.26 22.22
2.05e-01 4.33e-01  3.12¢-01 3.87e-01 3.64e-01
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Table 4. Performance rates and success rates of all algorithms for the CECOS5 functions successfully solved

Si No. Solved Normalized Performance Rates
1z¢
Functions F1 F2 F4 F5 Fo6 F7 F9
Best Performance Rates 5852 12837 15400 11880 - 544500 4757
ABC 2 1.75 - - - - - 2.38
100% 100%
SPSO 4 1 1 1 1 - - -
100%  100%  100%  100%
Hybrid 10 6 1.89 1.82 1.85 1.78 - 1 7.04
100%  100%  100%  100% 13.33%  100%
Hybridgp 6 1.13 1.69 1.87 1.68 - 331 2.02
100%  100%  100%  100% 333%  100%
Hybrid;rp 6 1.04 1.51 1.85 1,78 - 135 1
100%  100%  100%  100% 6.67%  100%
Best Performance Rates 18873 97200 - - 4718313 58320 41594
ABC 4 3.58 - - - 1 21.23 1.39
100% 3.33% 20% 100%
SPSO 3 1.49 1 - - - 1 -
100%  100% 50%
Hybrid 30 4 2.67 1.86 - - - 227 5.01
100%  100% 40% 100%
Hybridgp 4 1.72 1.81 - - - 1.4 1
100%  100% 5333%  100%
Hybrid;zp 4 1 1.4 - - - 1.26 17.17
100%  100% 30%  13.33%
Best Performance Rates 28222 280160 - - - 52186 107912
ABC 3 3.47 - - - - 6.06 1
100% 100% 100%
SPSO 3 1.39 1 - - - 1.05 -
100%  100% 100%
Hybrid 50 4 2.53 5.83 - - - 2.67 4.02
100%  30% 66.67% 96.67%
Hybridgp 4 1.67 5.75 - - - 1.77 1.07
100%  30% 66.67%  86.67%
Hybrid 3 1 1.28 - - - 1 -
yoreire 100%  100% 86.67%
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tion of Hybridzp being the best performer on 10
and Hybrid,rp being the best performer on f12.

Inspecting the results in Table 4 shows that
all versions of the hybrid algorithm are able to
reach the predetermined threshold for more func-
tions than ABC or SPSO. For all the successfully
solved functions, the Hybrid version almost has
double the speed of convergence of SPSO (mea-
sured in terms of consumed function evaluations).
Among the hybrid algorithms, the Hybrid;rp ver-
sion has the fastest speed of convergence.

The results of all the algorithms for fl and {9
show that the Hybrid version was the one able to
maintain the good performance of ABC on separa-
ble functions both from the solution reached point
of view as well as the success rate.

6 Conclusion

In this work we proposed a hybrid algorithm
consisting of ABC and SPSO components. This is
achieved by augmenting the SPSO algorithm with
an ABC component. This ABC component updates
the pbest information of the particles in every iter-
ation using the ABC update equation. Three differ-
ent selection mechanisms are tested within the ABC
component. One approach updates all the particles
using the ABC component while the remaining two
update the particles in a fitness proportionate man-
ner.

The algorithms were tested using the CECO05
benchmark library and it was shown that updating
all particles is usually able to provide better solu-
tions than the versions using the fitness proportion-
ate approach.

The hybrid algorithms were able to successfully
solve more problems than either ABC or SPSO
alone, although they may suffer from a lower suc-
cess rate in some situations. Another observation is
that the hybrid algorithms have a slower speed of
convergence than SPSO. Applying the update com-
ponent to all particles had the worst effect on the
speed of convergence. This is followed by selecting
the particles in a fitness proportionate approach and
finally by the inverse fitness proportionate selection
scheme.

In comparison to ABC, the most successful hy-
brid algorithm was the one involving updating all

the particles as it had the highest success rate of all
the hybrid versions on separable functions. Again,
this comes with the expense of having a slower
speed of convergence in comparison with ABC.

In future work it is intended to test the effect
of changing the parameter m on the performance of
the hybrid algorithm. We also intend to test how
to incorporate more than a single selection scheme
within the ABC component. A third direction is to
further augment the SPSO algorithm with the ABC
re-initialization component for a better chance of
escaping local minima.
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