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Abstract

In this paper we investigate the hybridization of two swarm intelligence algorithms;
namely, the Artificial Bee Colony Algorithm (ABC) and Particle Swarm Optimization
(PSO). The hybridization technique is a component-based one, where the PSO algorithm
is augmented with an ABC component to improve the personal bests of the particles.
Three different versions of the hybrid algorithm are tested in this work by experiment-
ing with different selection mechanisms for the ABC component. All the algorithms are
applied to the well-known CEC05 benchmark functions and compared based on three dif-
ferent metrics, namely, the solution reached, the success rate, and the performance rate.

1 Introduction

Both the artificial bee colony (ABC) and parti-
cle swarm optimization (PSO) algorithms are two
population-based algorithms developed in the past
15 years. Both algorithms are nature-inspired as
PSO mimics the behavior of a group of birds or a
school of fish looking for food while ABC mim-
ics the behavior of honey bees when locating food
sources. ABC and PSO have been proven through
many different studies [1, 2, 3, 4, 5] to be very ef-
ficient in function optimization and were applied to
many engineering applications.

The aim of this work is to combine these two
algorithms in order to gain benefit from their good
characteristics. In [6], it was shown that ABC has
an excellent performance on separable functions
and good competitive performance on multi-modal
and hybrid functions. On the other hand, it was
shown that the standard particle swarm optimiza-
tion (SPSO) algorithm has the best performance on
uni-modal functions.

To the best of our knowledge, the only previ-
ous attempt to combine these two algorithms was

proposed in [7]. However, the algorithm was a co-
operative rather than a hybrid one. The idea was to
have two separate ABC and PSO swarms running
in parallel and exchanging information during the
search. In this work, the hybridization is attempted
at the component level in order to come up with a
hybrid algorithm.

The paper is organized as follows: Sections 2
and 3 cover the basic ABC and PSO algorithms.
The hybrid algorithm is introduced in Section 4.
Results are presented and discussed in Section 5.

2 Artificial Bee Colony

The ABC algorithm was first proposed in [8].
The algorithm was inspired by the method adopted
by a swarm of honey bees to locate food sources.
There are two different honey bee groups that share
knowledge in order to successfully locate such
sources. First, there are the employed bees that are
currently exploiting a food source. Second, there
are the unemployed bees that are continuously look-
ing for a food source. Unemployed bees are divided
into scout bees that search around the nest and on-

F. Guderian, R. Schaffer and G. Fettweis

to the found MILP solutions. Moreover, the GA
enables to find adequate solutions for more com-
plex problems. Experiments with realistic bench-
marks showed that a tradeoff between communi-
cation and administration affinity significantly re-
duces administration latency improving application
performance. As network size and system adapt-
ability increase, the growing influence of adminis-
tration becomes more evident.
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lookers that wait at the nest and establish communi-
cation with the employed bees.

algorytm1

This algorithm was applied to multidimensional
and multi-modal function optimization in [8, 9].
The swarm is divided into employed bees, scouts
and onlookers. Sn solutions to the problem are ran-
domly initialized in the function domain and re-
ferred to as food sources. A number of employed
bees, set as the number of food sources and half the
colony size, are used to find new food sources using
the following equation:

vi j = xi j +ϕi j × (xi j − xk j), (1)

where xi j refers to problem variable j in food source
number i. j is a randomly selected number in [1,D]
and D is the number of dimensions. ϕi j is a ran-
dom number uniformly distributed in the range [-
1,1] while k is the index of a randomly chosen solu-
tion. Both vi and xi are then compared against each
other and the employed bee exploits the better food
source, which is a greedy selection mechanism.

Onlooker bees next choose a random food
source according to the probability given in equa-
tion 2. Then, each onlooker bee tries to find a better
food source around the selected one using equation
1.

pi =
f iti

Sn

∑
j=1

f it j

, (2)

where f iti is the fitness of the ith food source.

Finally, if a certain food source i cannot be im-
proved for a predetermined number of cycles, re-
ferred to as limit, this food source is abandoned.
The employed bee that was exploiting this food
source becomes a scout that looks for a new food
source by randomly searching the problem domain
using the following equation:

xi j = lb j + r× (ub j − lb j), (3)

where lb j and ub j are the lower and upper bounds
for problem variable j, and r is a random number
uniformly distributed in the range [0,1]. The ABC
algorithm is shown in Algorithm 2.

3 Particle Swarm Optimization

PSO is a population-based method, where the
population is referred to as a swarm. The swarm
consists of a number of individuals called particles.
Each particle i in the swarm holds: (i) the current
position xi, which represents a solution to the prob-
lem, (ii) the current velocity vi, (iii) the best po-
sition pbesti, the one associated with the best ob-
jective function value the particle has achieved so
far, and (iv) the neighborhood best position nbesti,
the one associated with the best objective func-
tion value found in the particle’s neighborhood.
The choice of nbesti depends on the neighborhood
topology adopted by the swarm, different neighbor-
hood topologies have been studied in [10].

In traditional PSO, each particle adjusts its own
position in every iteration in order to move towards
its best position and the neighborhood best accord-
ing to the following equations:

vt+1
i j = wvt

i j + c1r1(pbestt
i j − xt

i j)

+c2r2(nbestt
i j − xt

i j), (4)

xt+1
i j = xt

i j + vt+1
i j , (5)

for j ∈ {1 . . .D} where D is the number of dimen-
sions, i ∈ {1 . . .n} where n is the number of par-
ticles, t is the iteration number, w is the inertia

2 Artificial Bee Colony

The ABC algorithm was first proposed in [8]. The
algorithm was inspired by the method adopted by a
swarm of honey bees to locate food sources. There
are two different honey bee groups that share knowl-
edge in order to successfully locate such sources.
First, there are the employed bees that are currently
exploiting a food source. Second, there are the unem-
ployed bees that are continuously looking for a food
source. Unemployed bees are divided into scout bees
that search around the nest and onlookers that wait at
the nest and establish communication with the em-
ployed bees.

This algorithm was applied to multidimensional
and multi-modal function optimization in [8, 9]. The
swarm is divided into employed bees, scouts and on-
lookers. Sn solutions to the problem are randomly
initialized in the function domain and referred to as
food sources. A number of employed bees, set as the
number of food sources and half the colony size, are
used to find new food sources using the following
equation:

vi j = xi j +ϕi j × (xi j − xk j), (1)

where xi j refers to problem variable j in food source
number i. j is a randomly selected number in [1,D]
and D is the number of dimensions. ϕi j is a ran-
dom number uniformly distributed in the range [-1,1]
while k is the index of a randomly chosen solution.
Both vi and xi are then compared against each other
and the employed bee exploits the better food source,
which is a greedy selection mechanism.

Onlooker bees next choose a random food source
according to the probability given in equation 2.
Then, each onlooker bee tries to find a better food

source around the selected one using equation 1.

pi =
f iti

Sn

∑
j=1

f it j

, (2)

where f iti is the fitness of the ith food source.
Finally, if a certain food source i cannot be im-

proved for a predetermined number of cycles, re-
ferred to as limit, this food source is abandoned. The
employed bee that was exploiting this food source
becomes a scout that looks for a new food source by
randomly searching the problem domain using the
following equation:

xi j = lb j + r× (ub j − lb j), (3)

where lb j and ub j are the lower and upper bounds
for problem variable j, and r is a random number
uniformly distributed in the range [0,1]. The ABC
algorithm is shown in Algorithm 1.

Algorithm 1 The ABC algorithm
Require: Max Cycles,Sn, limit
1: Initialize the food sources
2: Evaluate the food sources
3: Cycle = 1
4: while Cycle ≤ Max Cycles do
5: Produce new solutions using employed bees as in eq. 1
6: Evaluate the new solutions and apply greedy selection
7: Calculate the probability using eq. 2
8: Produce new solutions using onlooker bees as in eq. 1
9: Evaluate the new solutions and apply greedy selection

10: for All solutions do
11: if A solution has not been improved for limit cycles

then
12: Generate a new random solution a scout bee as in

eq. 3
13: end if
14: end for
15: Memorize the best solution found so far
16: Cycle = Cycle + 1
17: end while
18: return best solution

2
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lookers that wait at the nest and establish communi-
cation with the employed bees.

algorytm1

This algorithm was applied to multidimensional
and multi-modal function optimization in [8, 9].
The swarm is divided into employed bees, scouts
and onlookers. Sn solutions to the problem are ran-
domly initialized in the function domain and re-
ferred to as food sources. A number of employed
bees, set as the number of food sources and half the
colony size, are used to find new food sources using
the following equation:

vi j = xi j +ϕi j × (xi j − xk j), (1)

where xi j refers to problem variable j in food source
number i. j is a randomly selected number in [1,D]
and D is the number of dimensions. ϕi j is a ran-
dom number uniformly distributed in the range [-
1,1] while k is the index of a randomly chosen solu-
tion. Both vi and xi are then compared against each
other and the employed bee exploits the better food
source, which is a greedy selection mechanism.

Onlooker bees next choose a random food
source according to the probability given in equa-
tion 2. Then, each onlooker bee tries to find a better
food source around the selected one using equation
1.

pi =
f iti

Sn

∑
j=1

f it j

, (2)

where f iti is the fitness of the ith food source.

Finally, if a certain food source i cannot be im-
proved for a predetermined number of cycles, re-
ferred to as limit, this food source is abandoned.
The employed bee that was exploiting this food
source becomes a scout that looks for a new food
source by randomly searching the problem domain
using the following equation:

xi j = lb j + r× (ub j − lb j), (3)

where lb j and ub j are the lower and upper bounds
for problem variable j, and r is a random number
uniformly distributed in the range [0,1]. The ABC
algorithm is shown in Algorithm 2.

3 Particle Swarm Optimization

PSO is a population-based method, where the
population is referred to as a swarm. The swarm
consists of a number of individuals called particles.
Each particle i in the swarm holds: (i) the current
position xi, which represents a solution to the prob-
lem, (ii) the current velocity vi, (iii) the best po-
sition pbesti, the one associated with the best ob-
jective function value the particle has achieved so
far, and (iv) the neighborhood best position nbesti,
the one associated with the best objective func-
tion value found in the particle’s neighborhood.
The choice of nbesti depends on the neighborhood
topology adopted by the swarm, different neighbor-
hood topologies have been studied in [10].

In traditional PSO, each particle adjusts its own
position in every iteration in order to move towards
its best position and the neighborhood best accord-
ing to the following equations:

vt+1
i j = wvt

i j + c1r1(pbestt
i j − xt

i j)

+c2r2(nbestt
i j − xt

i j), (4)

xt+1
i j = xt

i j + vt+1
i j , (5)

for j ∈ {1 . . .D} where D is the number of dimen-
sions, i ∈ {1 . . .n} where n is the number of par-
ticles, t is the iteration number, w is the inertia
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weight, r1 and r2 are two random numbers uni-
formly distributed in the range [0,1), and c1 and c2
are the acceleration factors.

After changing its position, each particle up-
dates its personal best position using (assuming a
minimization problem):

pbestt+1
i =

{
pbestt

i if f (pbestt
i)≤ f (xt+1

i ),

xt+1
i if f (pbestt

i)> f (xt+1
i ).

(6)
Finally, the global best of the swarm is updated us-
ing the following equation:

gbestt+1 = arg min
pbestt+1

i

f (pbestt+1
i ). (7)

This model is referred to as the lbest (local best)
model. Another simple model is the gbest (global
best) model, which is the case when the particle’s
neighborhood is defined as the whole swarm. The
basic PSO algorithm is shown in Algorithm 3.

algorytm2

4 The Hybrid Algorithm

The aim behind the hybrid algorithm is to effec-
tively mix components from both ABC and SPSO
in order to have an algorithm that easily solves sep-
arable problems as ABC while having a rotationally
invariant behavior as SPSO at the same time. The
reason for ABC being so good on separable func-
tions is that its update equation only updates a sin-
gle problem variable at a time after which the new
solution is re-evaluated.

4.1 Mixing Approach

The ABC component is added to SPSO after the
main loop. For m trials, a particle i is selected, and
a new candidate solution v is produced using the
ABC update equation. This is done after randomly
selecting another particle k as a neighbor and a ran-
dom problem variable j, hence v is produced as fol-
lows:

vl =

{
pbestil, l ̸= j,

pbestil +ϕil × (pbestil −pbestkl), l = j.
(8)

The new candidate solution v replaces pbesti if it
has a better fitness. The steps for this hybrid ap-
proach is shown in Algorithm 4.1.

algorytm3

4.2 Effect of m and the selection scheme

The number of trials m controls how much com-
putational power is given to the ABC component in
the hybrid algorithm. For example, if m equals the
number of particles in the swarm, both SPSO and
the ABC component have an equal share of the al-
lowed number of function evaluations.

Another design decision that affects the perfor-
mance of the hybrid algorithm is how to select a par-
ticle to update. Two appropriate selection schemes
are:

3 Particle Swarm Optimization

PSO is a population-based method, where the popu-
lation is referred to as a swarm. The swarm consists
of a number of individuals called particles. Each par-
ticle i in the swarm holds: (i) the current position xi,
which represents a solution to the problem, (ii) the
current velocity vi, (iii) the best position pbesti, the
one associated with the best objective function value
the particle has achieved so far, and (iv) the neighbor-
hood best position nbesti, the one associated with the
best objective function value found in the particle’s
neighborhood. The choice of nbesti depends on the
neighborhood topology adopted by the swarm, dif-
ferent neighborhood topologies have been studied in
[10].

In traditional PSO, each particle adjusts its own
position in every iteration in order to move towards
its best position and the neighborhood best according
to the following equations:

vt+1
i j = wvt

i j + c1r1(pbestt
i j − xt

i j)

+c2r2(nbestt
i j − xt

i j), (4)

xt+1
i j = xt

i j + vt+1
i j , (5)

for j ∈ {1 . . .D} where D is the number of dimen-
sions, i ∈ {1 . . .n} where n is the number of parti-
cles, t is the iteration number, w is the inertia weight,
r1 and r2 are two random numbers uniformly dis-
tributed in the range [0,1), and c1 and c2 are the ac-
celeration factors.

After changing its position, each particle updates
its personal best position using (assuming a mini-
mization problem):

pbestt+1
i =

{
pbestt

i if f (pbestt
i)≤ f (xt+1

i ),

xt+1
i if f (pbestt

i)> f (xt+1
i ).

(6)

Finally, the global best of the swarm is updated using
the following equation:

gbestt+1 = arg min
pbestt+1

i

f (pbestt+1
i ). (7)

This model is referred to as the lbest (local best)
model. Another simple model is the gbest (global
best) model, which is the case when the particle’s
neighborhood is defined as the whole swarm. The
basic PSO algorithm is shown in Algorithm 2.

Algorithm 2 The PSO algorithm
Require: Max Function Evaluations,n,w,c1,c2
1: Initialize the swarm
2: Evaluate the swarm
3: Max Iterations = Max Function Evaluations

Num Particles
4: Iter number = 1
5: while Iter number ≤ Max Iterations do
6: for every particle i do
7: Update vi as in eq. 4
8: Update xi as in eq. 5
9: Update pbesti as in eq. 6

10: end for
11: Update gbest
12: Iter number = Iter number + 1
13: end while
14: return gbest as in eq. 7

4 The Hybrid Algorithm

The aim behind the hybrid algorithm is to effectively
mix components from both ABC and SPSO in or-
der to have an algorithm that easily solves separable
problems as ABC while having a rotationally invari-
ant behavior as SPSO at the same time. The rea-
son for ABC being so good on separable functions is
that its update equation only updates a single prob-
lem variable at a time after which the new solution is
re-evaluated.

3

4.1 Mixing Approach

The ABC component is added to SPSO after the
main loop. For m trials, a particle i is selected, and a
new candidate solution v is produced using the ABC
update equation. This is done after randomly select-
ing another particle k as a neighbor and a random
problem variable j, hence v is produced as follows:

vl =

{
pbestil , l ̸= j,

pbestil +ϕil × (pbestil −pbestkl), l = j.
(8)

The new candidate solution v replaces pbesti if it has
a better fitness. The steps for this hybrid approach is
shown in Algorithm 3.

Algorithm 3 The ABC-PSO algorithm
Require: Max Function Evaluations,n,w,c1,c2,m
1: Initialize the swarm
2: Evaluate the swarm
3: Max Iterations = Max Function Evaluations

Num Particles
4: Iter number=1
5: while Iter number ≤ Max Iterations do
6: for every particle i do
7: Update vi
8: Update xi
9: if f (pbesti)≤ f (xi) then

10: pbesti = xi
11: end if
12: end for
13: Update gbest
14: for m trials do
15: Select a particle i to improve
16: Select a different random particle k
17: Select a random problem variable j
18: Apply ABC update rule to pbesti as in eq. 8
19: Update pbesti and gbest
20: end for
21: Iter number = Iter number + 1
22: end while
23: return gbest

4.2 Effect of m and the selection scheme

The number of trials m controls how much computa-
tional power is given to the ABC component in the
hybrid algorithm. For example, if m equals the num-
ber of particles in the swarm, both SPSO and the
ABC component have an equal share of the allowed
number of function evaluations.

Another design decision that affects the perfor-
mance of the hybrid algorithm is how to select a par-
ticle to update. Two appropriate selection schemes
are:

• Random selection, will be referred to as Hybrid
in the rest of the paper,

• Fitness proportionate selection:

– Higher probability of selecting good par-
ticles, HybridFP,

– Higher probability of selecting bad parti-
cles, HybridIFP.

For fitness proportionate selection, more update
attempts could be either targeted towards good or
bad particles. As for random selection, it becomes
only necessary if m < n (the swarm size). However,
if m = n, an update attempt is carried out for every
particle.

5 Results and Discussion

5.1 Experimental Setup

All the algorithms are applied to the CEC05 bench-
mark functions [11]. This library provides a class of
shifted and/or rotated functions including uni-modal
functions (f1-f5) and multi-modal functions (f6-f14).
For all experiments, the termination criterion is the
maximum number of allowable function evaluations
set as 104 ×D, where D is the problem dimensional-
ity. Experiments are carried out for D = 10, 30 and

4
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– Random selection, will be referred to as Hybrid
in the rest of the paper,

– Fitness proportionate selection:

– Higher probability of selecting good parti-
cles, HybridFP,

– Higher probability of selecting bad particles,
HybridIFP.

For fitness proportionate selection, more update at-
tempts could be either targeted towards good or bad
particles. As for random selection, it becomes only
necessary if m < n (the swarm size). However, if
m = n, an update attempt is carried out for every
particle.

5 Results and Discussion

5.1 Experimental Setup

All the algorithms are applied to the CEC05
benchmark functions [11]. This library provides a
class of shifted and/or rotated functions including
uni-modal functions (f1-f5) and multi-modal func-
tions (f6-f14). For all experiments, the termination
criterion is the maximum number of allowable func-
tion evaluations set as 104×D, where D is the prob-
lem dimensionality. Experiments are carried out for
D = 10, 30 and 50 dimensions. For all algorithms,
initial candidate solutions are randomly initialized
using uniform distribution over the specified do-
main. For each function, the reported solution is
the average taken over all 30 different runs.

Performance assessment is based on three met-
rics. First, the solution reached after the allocated
number of function evaluations. Second, the suc-
cess rate defined as the number of successful runs
over the total number of runs (a successful run is
defined as a run where the tested algorithm has
reached a predefined threshold for the function un-
der study). Third, the performance rate, which is
defined as follows:

Per f ormance rate =
FEV avg× total runs

success f ul runs
, (9)

where FEV avg is the average number of func-
tion evaluations needed to reach the predetermined

threshold taken over the successful runs only. The
threshold values are defined in [11] as 10−6 for uni-
modal functions and 10−2 for multi-modal func-
tions.

Experiments use the ABC code available at [12]
and SPSO code (version 2007) available at [13].
The hybrid algorithm is implemented by augment-
ing the available SPSO code with the ABC compo-
nent.

5.2 Parameter Tuning

For ABC, the work in [14] indicated that there
is no need to have a huge colony size in order to
provide good results. The experiments were re-
peated using populations of 20, 40 and 100 bees for
the three problem sizes. It was found that using a
swarm of 40 bees provided the best results on aver-
age for all the dimensions. The recommendations in
[15] were followed by setting the limit parameters
to Sn ×D, although recent research [14] indicated
that lower values might be needed for more difficult
functions.

For SPSO, the only parameter set is the swarm
size and it was set to 40. The parameter values for
w,c1, and c2 are already set in the code as 1.193,
1.193, and 0.721 respectively.

5.3 Experimental Results

The results are provided in Table 1 for uni-
modal functions, and Tables 2 and 3 for multi-
modal functions. The best results are highlighted
in bold (to test for the significance of the results,
we used the Mann-Whitney non-parametric statisti-
cal test, where the null hypothesis is rejected with a
95% confidence level).

For uni-modal functions, the results in Table 1
show that all versions of the hybrid algorithm have
a similar performance for a problem size of 10. For
higher problem sizes, there is no clear version that
comes out as the best performer. While the Hybrid
version has a better performance on f5, HybridFP

has the better performance on f4 and HybridIFP has
the better performance on f2.

For multi-modal functions, the results in Tables
2 and 3 show that the Hybrid version is the best per-
former for a problem size of 10. The same behavior
continues for higher problem sizes with the excep-
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– Random selection, will be referred to as Hybrid
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the average taken over all 30 different runs.

Performance assessment is based on three met-
rics. First, the solution reached after the allocated
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cess rate defined as the number of successful runs
over the total number of runs (a successful run is
defined as a run where the tested algorithm has
reached a predefined threshold for the function un-
der study). Third, the performance rate, which is
defined as follows:
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, (9)

where FEV avg is the average number of func-
tion evaluations needed to reach the predetermined

threshold taken over the successful runs only. The
threshold values are defined in [11] as 10−6 for uni-
modal functions and 10−2 for multi-modal func-
tions.

Experiments use the ABC code available at [12]
and SPSO code (version 2007) available at [13].
The hybrid algorithm is implemented by augment-
ing the available SPSO code with the ABC compo-
nent.

5.2 Parameter Tuning

For ABC, the work in [14] indicated that there
is no need to have a huge colony size in order to
provide good results. The experiments were re-
peated using populations of 20, 40 and 100 bees for
the three problem sizes. It was found that using a
swarm of 40 bees provided the best results on aver-
age for all the dimensions. The recommendations in
[15] were followed by setting the limit parameters
to Sn ×D, although recent research [14] indicated
that lower values might be needed for more difficult
functions.

For SPSO, the only parameter set is the swarm
size and it was set to 40. The parameter values for
w,c1, and c2 are already set in the code as 1.193,
1.193, and 0.721 respectively.

5.3 Experimental Results

The results are provided in Table 1 for uni-
modal functions, and Tables 2 and 3 for multi-
modal functions. The best results are highlighted
in bold (to test for the significance of the results,
we used the Mann-Whitney non-parametric statisti-
cal test, where the null hypothesis is rejected with a
95% confidence level).

For uni-modal functions, the results in Table 1
show that all versions of the hybrid algorithm have
a similar performance for a problem size of 10. For
higher problem sizes, there is no clear version that
comes out as the best performer. While the Hybrid
version has a better performance on f5, HybridFP

has the better performance on f4 and HybridIFP has
the better performance on f2.

For multi-modal functions, the results in Tables
2 and 3 show that the Hybrid version is the best per-
former for a problem size of 10. The same behavior
continues for higher problem sizes with the excep-
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Table 1. Results of all the algorithms for the uni-modal CEC05 functions

Physical Motor imagery
Subject DTC(%) GA-MLD(%) DTC(%) GA-MLD(%)
S1 78.5 ± 4.28 83.0 ± 4.59 52.4 ± 3.04 56.8 ± 2.76
S2 74.7 ± 3.15 78.2 ± 3.90 38.4 ± 4.02 49.1 ± 2.57
S3 59.1 ± 5.47 63.2 ± 4.83 40.8 ± 5.73 39.7 ± 4.88
Average 70.7 ± 10.28 74.8 ± 10.33 43.9 ± 7.49 48.5 ± 8.56

Table 1: Results of all the algorithms for the uni-modal CEC05 functions
Benchmark Size ABC SPSO Hybrid HybridFP HybridIFPFunction

f1

10

0 0 0 0 0
0 0 0 0 0

f2 3.73 0 0 0 0
2.52 0 0 0 0

f3 6.41e+05 5.64e+04 9.85e+04 1.02e+05 9.42e+04
2.78e+05 3.27e+04 6.47e+04 8.65e+04 7.57e+04

f4 29.17 0 0 0 0
41.83 0 0 0 0

f5 86.76 0 0 0 0
100.53 0 0 0 0

f1

30

1.06e-13 0 0 0 0
1.97e-14 0 0 0 0

f2 2.49e+03 0 0 0 0
969.89 0 0 0 0

f3 6.22e+06 2.21e+05 8.02e+05 6.83e+05 4.68e+05
1.67e+06 9.53e+04 1.07e+06 4.30e+05 1.58e+05

f4 1.49e+04 8.35e-04 8.88 2.26 3.27
5.15e+03 1.29e-03 5.31 2.03 3.49

f5 1.08e+04 3.44e+03 3.15e+03 3.42e+03 3.68e+03
1.47e+03 777.42 751.01 668.98 941.01

f1

50

2.04e-13 0 0 0 0
3.20e-14 0 0 0 0

f2 1.61e+04 0 8.00e-07 1.17e-06 0
4.05e+03 0 6.10e-07 1.12e-06 0

f3 1.08e+07 2.59e+05 4.79e+05 8.68e+05 6.00e+05
2.65e+06 7.85e+04 1.35e+05 3.94e+05 2.98e+05

f4 6.42e+04 152.51 3.05e+03 1.52e+03 1.56e+03
1.24e+04 118.64 1.23e+03 636.58 783.63

f5 2.54e+04 8.84e+03 8.16e+03 8.30e+03 9.06e+03
2.54e+03 1.59e+03 1.16e+03 1.25e+03 1.50e+03

Conclusion

In this work we proposed a hybrid algorithm consist-
ing of ABC and SPSO components. This is achieved
by augmenting the SPSO algorithm with an ABC
component. This ABC component updates the pbest
information of the particles in every iteration using
the ABC update equation. Three different selec-
tion mechanisms are tested within the ABC compo-

nent. One approach updates all the particles using
the ABC component while the remaining two update
the particles in a fitness proportionate manner.

The algorithms were tested using the CEC05
benchmark library and it was shown that updating
all particles is usually able to provide better solutions
than the versions using the fitness proportionate ap-
proach.

The hybrid algorithms were able to successfully

6
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Table 2. Results of all the algorithms for the multi-modal CEC05 functions, 10 and 30 dimensions

Physical Motor imagery
Subject DTC(%) GA-MLD(%) DTC(%) GA-MLD(%)
S1 78.5 ± 4.28 83.0 ± 4.59 52.4 ± 3.04 56.8 ± 2.76
S2 74.7 ± 3.15 78.2 ± 3.90 38.4 ± 4.02 49.1 ± 2.57
S3 59.1 ± 5.47 63.2 ± 4.83 40.8 ± 5.73 39.7 ± 4.88
Average 70.7 ± 10.28 74.8 ± 10.33 43.9 ± 7.49 48.5 ± 8.56

Table 3. Results of all the algorithms for the multi-modal CEC05 functions, 50 dimensions

Physical Motor imagery
Subject DTC(%) GA-MLD(%) DTC(%) GA-MLD(%)
S1 78.5 ± 4.28 83.0 ± 4.59 52.4 ± 3.04 56.8 ± 2.76
S2 74.7 ± 3.15 78.2 ± 3.90 38.4 ± 4.02 49.1 ± 2.57
S3 59.1 ± 5.47 63.2 ± 4.83 40.8 ± 5.73 39.7 ± 4.88
Average 70.7 ± 10.28 74.8 ± 10.33 43.9 ± 7.49 48.5 ± 8.56

Table 2: Results of all the algorithms for the multi-modal CEC05 functions, 10 and 30 dimensions
Benchmark Size ABC SPSO Hybrid HybridFP HybridIFPFunction

f6

10

1.46 39.89 14.90 437.75 271.77
1.63 113.23 56.89 1.12e+03 663.83

f7 2.45e-01 4.36e-02 2.75e-02 6.55e-02 5.08e-02
1.27e-01 1.96e-02 1.43e-02 4.55e-02 3.42e-02

f9 0 5.26 0 0 0
0 2.74 0 0 0

f10 28.59 4.59 6.11 6.47 6.34
8.29 1.96 2.11 2.29 2.97

f11 5.38 2.97 4.67 4.11 4.89
6.04e-01 1.52 7.85e-01 2.11 1.61

f12 299.39 5.97e+03 210.31 1.40e+03 641.68
177.41 3.00e+03 117.38 1.05e+03 722.03

f13 2.19e-01 8.60e-01 2.76e-01 4.23e-01 4.18e-01
8.95e-02 2.18e-01 5.72e-02 1.01e-01 1.92e-01

f14 3.34 2.47 2.76 2.85 2.82
2.12e-01 3.93e-01 3.76e-01 3.55e-01 3.72e-01

f6

30

7.49 141.65 341.18 549.57 1.93e+03
10.99 226.24 364.37 1.32e+03 3.15e+03

f7 1.23e-02 2.04e-02 2.61e-02 2.24e-02 3.62e-02
5.04e-03 1.57e-02 2.67e-02 2.71e-02 4.98e-02

f9 6.06e-14 44.37 0 0 6.23
1.44e-14 10.15 0 0 6.25

f10 333.43 46.13 67.80 59.08 68.78
68.97 11.91 14.42 22.62 28.93

f11 27.94 30.06 28.09 31.31 30.11
1.62 2.85 2.26 2.21 3.39

f12 8.55e+03 2.95e+05 1.45e+04 2.20e+04 7.98e+03
3.70e+03 6.28e+04 4.27e+03 1.03e+04 4.75e+03

f13 9.44e-01 4.37 1.30 1.51 1.78
1.19e-01 1.27 1.46e-01 2.25e-01 6.12e-01

f14 12.97 12.44 12.33 12.63 12.66
2.16e-01 3.76e-01 3.53e-01 3.61e-01 3.53e-01

solve more problems than either ABC or SPSO
alone, although they may suffer from a lower success
rate in some situations. Another observation is that
the hybrid algorithms have a slower speed of conver-
gence than SPSO. Applying the update component to
all particles had the worst effect on the speed of con-
vergence. This is followed by selecting the particles
in a fitness proportionate approach and finally by the

inverse fitness proportionate selection scheme.
In comparison to ABC, the most successful hy-

brid algorithm was the one involving updating all the
particles as it had the highest success rate of all the
hybrid versions on separable functions. Again, this
comes with the expense of having a slower speed of
convergence in comparison with ABC.

In future work it is intended to test the effect of

7

Table 3: Results of all the algorithms for the multi-modal CEC05 functions, 50 dimensions
Benchmark Size ABC SPSO Hybrid HybridFP HybridIFPFunction

f6

50

6.16 219.74 272.91 990.98 886.54
7.76 243.62 324.18 2.16e+03 1.84e+03

f7 1.68e-04 9.66e-03 1.24e-02 1.07e-02 3.85e-03
1.23e-04 1.61e-02 1.62e-02 1.55e-02 8.65e-03

f9 1.14e-13 119.56 1.22e-03 1.33e-01 50.88
1.02e-28 25.62 6.69e-03 3.44e-01 31.24

f10 1.08e+03 130.47 182.04 135.08 209.53
102.68 25.06 32.32 53.94 66.77

f11 56.24 57.28 57.15 60.54 60.16
2.23 3.84 2.07 4.07 3.59

f12 3.52e+04 1.60e+06 6.80e+04 6.71e+04 3.39e+04
1.05e+04 2.94e+05 1.66e+04 2.23e+04 1.83e+04

f13 1.63 9.02 2.69 2.67 5.36
1.97e-01 3.51 2.06e-01 3.72e-01 2.13

f14 22.68 22.01 21.87 22.26 22.22
2.05e-01 4.33e-01 3.12e-01 3.87e-01 3.64e-01

changing the parameter m on the performance of the
hybrid algorithm. We also intend to test how to in-
corporate more than a single selection scheme within
the ABC component. A third direction is to fur-
ther augment the SPSO algorithm with the ABC re-
initialization component for a better chance of escap-
ing local minima.
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Table 2. Results of all the algorithms for the multi-modal CEC05 functions, 10 and 30 dimensions

Physical Motor imagery
Subject DTC(%) GA-MLD(%) DTC(%) GA-MLD(%)
S1 78.5 ± 4.28 83.0 ± 4.59 52.4 ± 3.04 56.8 ± 2.76
S2 74.7 ± 3.15 78.2 ± 3.90 38.4 ± 4.02 49.1 ± 2.57
S3 59.1 ± 5.47 63.2 ± 4.83 40.8 ± 5.73 39.7 ± 4.88
Average 70.7 ± 10.28 74.8 ± 10.33 43.9 ± 7.49 48.5 ± 8.56

Table 3. Results of all the algorithms for the multi-modal CEC05 functions, 50 dimensions

Physical Motor imagery
Subject DTC(%) GA-MLD(%) DTC(%) GA-MLD(%)
S1 78.5 ± 4.28 83.0 ± 4.59 52.4 ± 3.04 56.8 ± 2.76
S2 74.7 ± 3.15 78.2 ± 3.90 38.4 ± 4.02 49.1 ± 2.57
S3 59.1 ± 5.47 63.2 ± 4.83 40.8 ± 5.73 39.7 ± 4.88
Average 70.7 ± 10.28 74.8 ± 10.33 43.9 ± 7.49 48.5 ± 8.56
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Table 4. Performance rates and success rates of all algorithms for the CEC05 functions successfully solved

Physical Motor imagery
Subject DTC(%) GA-MLD(%) DTC(%) GA-MLD(%)
S1 78.5 ± 4.28 83.0 ± 4.59 52.4 ± 3.04 56.8 ± 2.76
S2 74.7 ± 3.15 78.2 ± 3.90 38.4 ± 4.02 49.1 ± 2.57
S3 59.1 ± 5.47 63.2 ± 4.83 40.8 ± 5.73 39.7 ± 4.88
Average 70.7 ± 10.28 74.8 ± 10.33 43.9 ± 7.49 48.5 ± 8.56

Table 4: Performance rates and success rates of all algorithms for the CEC05 functions successfully solved

Size No. Solved Normalized Performance Rates
Functions F1 F2 F4 F5 F6 F7 F9

Best Performance Rates

10

5852 12837 15400 11880 - 544500 4757

ABC 2 1.75 - - - - - 2.38
100% 100%

SPSO 4 1 1 1 1 - - -
100% 100% 100% 100%

Hybrid 6 1.89 1.82 1.85 1.78 - 1 7.24
100% 100% 100% 100% 13.33% 100%

HybridFP 6 1.13 1.69 1.87 1.68 - 3.31 2.02
100% 100% 100% 100% 3.33% 100%

HybridIFP 6 1.04 1.51 1.85 1,78 - 1.35 1
100% 100% 100% 100% 6.67% 100%

Best Performance Rates

30

18873 97200 - - 4718313 58320 41594

ABC 4 3.58 - - - 1 21.23 1.39
100% 3.33% 20% 100%

SPSO 3 1.49 1 - - - 1 -
100% 100% 50%

Hybrid 4 2.67 1.86 - - - 2.27 5.01
100% 100% 40% 100%

HybridFP 4 1.72 1.81 - - - 1.4 1
100% 100% 53.33% 100%

HybridIFP 4 1 1.4 - - - 1.26 17.17
100% 100% 30% 13.33%

Best Performance Rates

50

28222 280160 - - - 52186 107912

ABC 3 3.47 - - - - 6.06 1
100% 100% 100%

SPSO 3 1.39 1 - - - 1.05 -
100% 100% 100%

Hybrid 4 2.53 5.83 - - - 2.67 4.02
100% 30% 66.67% 96.67%

HybridFP 4 1.67 5.75 - - - 1.77 1.07
100% 30% 66.67% 86.67%

HybridIFP 3 1 1.28 - - - 1 -
100% 100% 86.67%

10

Table 2: Results of all the algorithms for the multi-modal CEC05 functions, 10 and 30 dimensions
Benchmark Size ABC SPSO Hybrid HybridFP HybridIFPFunction

f6

10

1.46 39.89 14.90 437.75 271.77
1.63 113.23 56.89 1.12e+03 663.83

f7 2.45e-01 4.36e-02 2.75e-02 6.55e-02 5.08e-02
1.27e-01 1.96e-02 1.43e-02 4.55e-02 3.42e-02

f9 0 5.26 0 0 0
0 2.74 0 0 0

f10 28.59 4.59 6.11 6.47 6.34
8.29 1.96 2.11 2.29 2.97

f11 5.38 2.97 4.67 4.11 4.89
6.04e-01 1.52 7.85e-01 2.11 1.61

f12 299.39 5.97e+03 210.31 1.40e+03 641.68
177.41 3.00e+03 117.38 1.05e+03 722.03

f13 2.19e-01 8.60e-01 2.76e-01 4.23e-01 4.18e-01
8.95e-02 2.18e-01 5.72e-02 1.01e-01 1.92e-01

f14 3.34 2.47 2.76 2.85 2.82
2.12e-01 3.93e-01 3.76e-01 3.55e-01 3.72e-01

f6

30

7.49 141.65 341.18 549.57 1.93e+03
10.99 226.24 364.37 1.32e+03 3.15e+03

f7 1.23e-02 2.04e-02 2.61e-02 2.24e-02 3.62e-02
5.04e-03 1.57e-02 2.67e-02 2.71e-02 4.98e-02

f9 6.06e-14 44.37 0 0 6.23
1.44e-14 10.15 0 0 6.25

f10 333.43 46.13 67.80 59.08 68.78
68.97 11.91 14.42 22.62 28.93

f11 27.94 30.06 28.09 31.31 30.11
1.62 2.85 2.26 2.21 3.39

f12 8.55e+03 2.95e+05 1.45e+04 2.20e+04 7.98e+03
3.70e+03 6.28e+04 4.27e+03 1.03e+04 4.75e+03

f13 9.44e-01 4.37 1.30 1.51 1.78
1.19e-01 1.27 1.46e-01 2.25e-01 6.12e-01

f14 12.97 12.44 12.33 12.63 12.66
2.16e-01 3.76e-01 3.53e-01 3.61e-01 3.53e-01

solve more problems than either ABC or SPSO
alone, although they may suffer from a lower success
rate in some situations. Another observation is that
the hybrid algorithms have a slower speed of conver-
gence than SPSO. Applying the update component to
all particles had the worst effect on the speed of con-
vergence. This is followed by selecting the particles
in a fitness proportionate approach and finally by the

inverse fitness proportionate selection scheme.
In comparison to ABC, the most successful hy-

brid algorithm was the one involving updating all the
particles as it had the highest success rate of all the
hybrid versions on separable functions. Again, this
comes with the expense of having a slower speed of
convergence in comparison with ABC.

In future work it is intended to test the effect of

7

Table 3: Results of all the algorithms for the multi-modal CEC05 functions, 50 dimensions
Benchmark Size ABC SPSO Hybrid HybridFP HybridIFPFunction

f6

50

6.16 219.74 272.91 990.98 886.54
7.76 243.62 324.18 2.16e+03 1.84e+03

f7 1.68e-04 9.66e-03 1.24e-02 1.07e-02 3.85e-03
1.23e-04 1.61e-02 1.62e-02 1.55e-02 8.65e-03

f9 1.14e-13 119.56 1.22e-03 1.33e-01 50.88
1.02e-28 25.62 6.69e-03 3.44e-01 31.24

f10 1.08e+03 130.47 182.04 135.08 209.53
102.68 25.06 32.32 53.94 66.77

f11 56.24 57.28 57.15 60.54 60.16
2.23 3.84 2.07 4.07 3.59

f12 3.52e+04 1.60e+06 6.80e+04 6.71e+04 3.39e+04
1.05e+04 2.94e+05 1.66e+04 2.23e+04 1.83e+04

f13 1.63 9.02 2.69 2.67 5.36
1.97e-01 3.51 2.06e-01 3.72e-01 2.13

f14 22.68 22.01 21.87 22.26 22.22
2.05e-01 4.33e-01 3.12e-01 3.87e-01 3.64e-01

changing the parameter m on the performance of the
hybrid algorithm. We also intend to test how to in-
corporate more than a single selection scheme within
the ABC component. A third direction is to fur-
ther augment the SPSO algorithm with the ABC re-
initialization component for a better chance of escap-
ing local minima.
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Table 4. Performance rates and success rates of all algorithms for the CEC05 functions successfully solved

Physical Motor imagery
Subject DTC(%) GA-MLD(%) DTC(%) GA-MLD(%)
S1 78.5 ± 4.28 83.0 ± 4.59 52.4 ± 3.04 56.8 ± 2.76
S2 74.7 ± 3.15 78.2 ± 3.90 38.4 ± 4.02 49.1 ± 2.57
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tion of HybridFP being the best performer on f10
and HybridIFP being the best performer on f12.

Inspecting the results in Table 4 shows that
all versions of the hybrid algorithm are able to
reach the predetermined threshold for more func-
tions than ABC or SPSO. For all the successfully
solved functions, the Hybrid version almost has
double the speed of convergence of SPSO (mea-
sured in terms of consumed function evaluations).
Among the hybrid algorithms, the HybridIFP ver-
sion has the fastest speed of convergence.

The results of all the algorithms for f1 and f9
show that the Hybrid version was the one able to
maintain the good performance of ABC on separa-
ble functions both from the solution reached point
of view as well as the success rate.

6 Conclusion

In this work we proposed a hybrid algorithm
consisting of ABC and SPSO components. This is
achieved by augmenting the SPSO algorithm with
an ABC component. This ABC component updates
the pbest information of the particles in every iter-
ation using the ABC update equation. Three differ-
ent selection mechanisms are tested within the ABC
component. One approach updates all the particles
using the ABC component while the remaining two
update the particles in a fitness proportionate man-
ner.

The algorithms were tested using the CEC05
benchmark library and it was shown that updating
all particles is usually able to provide better solu-
tions than the versions using the fitness proportion-
ate approach.

The hybrid algorithms were able to successfully
solve more problems than either ABC or SPSO
alone, although they may suffer from a lower suc-
cess rate in some situations. Another observation is
that the hybrid algorithms have a slower speed of
convergence than SPSO. Applying the update com-
ponent to all particles had the worst effect on the
speed of convergence. This is followed by selecting
the particles in a fitness proportionate approach and
finally by the inverse fitness proportionate selection
scheme.

In comparison to ABC, the most successful hy-
brid algorithm was the one involving updating all

the particles as it had the highest success rate of all
the hybrid versions on separable functions. Again,
this comes with the expense of having a slower
speed of convergence in comparison with ABC.

In future work it is intended to test the effect
of changing the parameter m on the performance of
the hybrid algorithm. We also intend to test how
to incorporate more than a single selection scheme
within the ABC component. A third direction is to
further augment the SPSO algorithm with the ABC
re-initialization component for a better chance of
escaping local minima.
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tion of HybridFP being the best performer on f10
and HybridIFP being the best performer on f12.

Inspecting the results in Table 4 shows that
all versions of the hybrid algorithm are able to
reach the predetermined threshold for more func-
tions than ABC or SPSO. For all the successfully
solved functions, the Hybrid version almost has
double the speed of convergence of SPSO (mea-
sured in terms of consumed function evaluations).
Among the hybrid algorithms, the HybridIFP ver-
sion has the fastest speed of convergence.

The results of all the algorithms for f1 and f9
show that the Hybrid version was the one able to
maintain the good performance of ABC on separa-
ble functions both from the solution reached point
of view as well as the success rate.

6 Conclusion

In this work we proposed a hybrid algorithm
consisting of ABC and SPSO components. This is
achieved by augmenting the SPSO algorithm with
an ABC component. This ABC component updates
the pbest information of the particles in every iter-
ation using the ABC update equation. Three differ-
ent selection mechanisms are tested within the ABC
component. One approach updates all the particles
using the ABC component while the remaining two
update the particles in a fitness proportionate man-
ner.

The algorithms were tested using the CEC05
benchmark library and it was shown that updating
all particles is usually able to provide better solu-
tions than the versions using the fitness proportion-
ate approach.

The hybrid algorithms were able to successfully
solve more problems than either ABC or SPSO
alone, although they may suffer from a lower suc-
cess rate in some situations. Another observation is
that the hybrid algorithms have a slower speed of
convergence than SPSO. Applying the update com-
ponent to all particles had the worst effect on the
speed of convergence. This is followed by selecting
the particles in a fitness proportionate approach and
finally by the inverse fitness proportionate selection
scheme.

In comparison to ABC, the most successful hy-
brid algorithm was the one involving updating all

the particles as it had the highest success rate of all
the hybrid versions on separable functions. Again,
this comes with the expense of having a slower
speed of convergence in comparison with ABC.

In future work it is intended to test the effect
of changing the parameter m on the performance of
the hybrid algorithm. We also intend to test how
to incorporate more than a single selection scheme
within the ABC component. A third direction is to
further augment the SPSO algorithm with the ABC
re-initialization component for a better chance of
escaping local minima.
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