PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Performance Analyses with Frequently Discrete Usage of the Hot Storage Tanks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hot water storage tanks are devices with high energy consumption, used widely in residential, industrial and commercial sectors. The hot storage tank is a key device in numerous applications such as electrical heaters, solar thermal storage, solar electrical energy production and many others. Its superior technology is favorable for the designers and has a great impact on the market competition. Hot water storage tanks were studied under continuous usage feature, for different inlet types, flow rates, thermal stratification in static and dynamic modes, both experimentally and numerically. The real discrete usage feature has not been analyzed in a proper way. In this study, the experimental and performance analyses with frequent discrete usage of the hot storage tank were performed. Different flow rates of 3, 6, and 9 l/min with 5, 10 and 20 min discrete usage waiting periods were studied. It was found that the thermocline thickness and mixing number increases for both increasing the flow rate due the increment in turbulent mixing potential and increasing the waiting period due to the increase in heat transfer time available between the hot and cold layers. The real data was drawn as is to permit further analyses and data comparison to other researchers. The effect of waiting periods can be used in solar HST to maximize the efficiency of solar collectors as the solar collector efficiency is high at low temperatures.
Rocznik
Strony
52--60
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Mechanical and Industrial Engineering Department, Applied Science University Private, Amman, Jordan
  • Mechanical Engineering Department, Tafila Technical University, Tafila, Jordan
  • Natural Resources and Chemical Engineering Department, Tafila Technical University, Tafila, Jordan
  • Mechanical Engineering Department, AL Balqa Applied University, Amman, Jordan
  • Mechanical Engineering Department, Tafila Technical University, Tafila, Jordan
Bibliografia
  • 1. Alva G, Lin Y, Fang G. 2018. An overview of thermal energy storage systems. Energy, doi: 10.1016/j.energy.2017.12.037.
  • 2. Arslan M., Igci A.A. 2015. Thermal performance of a vertical solar hot water storage tank with a mantle heat exchanger depending on the discharging operation parameters. Solar Energy 116, 184–204, .doi: 10.1016/j.solener.2015.03.045.
  • 3. Davidson J. H., Adams D. A., Miller J. A. 1994. A Coefficient to Characterize Mixing in Solar Water Storage Tanks. Transactions of the ASME, Vol. 116, May.
  • 4. Fernandez-Seara J., Uhıa F.J., Sieres J. 2007. Experimental analysis of a domestic electric hot water storage tank. Part II: dynamic mode of operation. Applied Thermal Engineering 27, 137–144.
  • 5. García Mari E., Gasque Albalate M., Gutiérrez Colomer R.P., Ibáñez Solís F., González Altozano P. 2013. A new inlet device that enhances thermal stratification during charging in a hot water storage tank.” Applied Thermal Engineering. 61(2): 663–669, doi: 10.1016/j.applthermaleng.2013.08.023.
  • 6. Gopalakrishnan N., Srinivasa Murthy S. 2009. Mixed Convective Flow and Thermal Stratification in Hot Water Storage Tanks during Discharging Mode. Applied Solar Energy, 45(4), 254–261.
  • 7. Gürtürk M., Koca A., Öztop H.F., Varol Y. & Şekerci M. 2017. Energy and exergy analysis of a heat storage tank with novel eutectic phase change material layer of a solar heater system. International Journal of Green Energy, doi: 10.1080/15435075.2017.1358625.
  • 8. Heming Yuna, Fangfang M.A., Xunhu Guo, Baoming Chen 2017. Field Synergy Analysis of Thermal Storage Effect of Solar Energy Storage Tank. Procedia Engineering 205, 4001–4008, doi: 10.1016/j.proeng.2017.09.866.
  • 9. Moncho-Esteve I.J., Gasque M., Gonz´alez-Altozano P., Palau-Salvador G., 2016. Simple inlet devices and their influence on thermal stratification in a hot water storage tank. Energy and Buildings, doi: 10.1016/j.enbuild.2017.06.012.
  • 10. Njoku H.O., Ekechukwu O.V., Onyegegbu S.O. 2014. Analysis of stratified thermal storage systems: An overview. Heat Mass Transfer, 50, 1017–1030. DOI: 10.1007/s00231–014–1302–8.
  • 11. Oppel F.J., Ghajar A.J. and Moretti P.M. 1986. Computer Simulation of Stratified Heat Storage. Applied Energy, 23, 205–224.
  • 12. Penkova N., Harryzanov N. 2014. Analysis and optimization of temperature stratification in a thermal energy storage tank. Energy and Sustainability V, WIT Transactions on Ecology and The Environment, 186, 469–478, doi: 10.2495/ESUS140401.
  • 13. Porteiro J., Míguez J.L., Crespo B., de Lara J., Pousada J.M. 2016. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands. Materials 9, 213, doi: 10.3390/ma9030213.
  • 14. Švarc P., Seidl J., Dvorák V. 2014. Experimental study of influence of inlet geometry on thermal stratification in thermal energy storage during charging process. EPJ Web of Conferences, 67, 02114, doi: 10.1051/epjconf/20146702114.
  • 15. Zilong Wang, Hua Zhang, Binlin Dou, Huajie Huang, Weidong Wu, Zhiyun Wang 2017. Experimental and numerical research of thermal stratification with a novel inlet in a dynamic hot water storage tank. Renewable Energy, doi: 10.1016/j.renene.2017.04.007.
  • 16. Zurigat Y.H., Ghajar A.J. & Moretti E.M. 1988. Stratified Thermal Storage Tank Inlet Mixing Characterization. Applied Energy, 30, 99–111.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f85c512b-a964-4f28-8a39-e28d579c7881
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.