PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Meso-scale modelling of size effect on pure torsional-shear of RC columns

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Under the action of earthquake, the reinforced concrete (RC) columns may subject to torsional moment, and the existence of torsion will change the failure mode of RC columns. Moreover, the torsional fracture of RC columns often presents a brittle fracture pattern, and thus may have an obvious size effect. In this work, a three-dimensional meso-scale simulation approach was utilized to study the torsional failure of RC columns. The influence of structural size, longitudinal reinforcement ratio, stirrup ratio and cross-sectional shape on torsional failure of RC columns was investigated. The results show that: (1) the tested RC columns show brittle failure patterns, the nominal torsional strength presents obvious size effect; (2) the longitudinal reinforcement presents little influence on the size effect; (3) columns with square cross-section present stronger size effect than the ones with circular shape; (4) stirrups can improve the torsional strength, while they would weaken the size effect on torsional strength. In addition, a novel size effect law that can describe the quantitative influence of stirrup ratio was established. Finally, based on the variable angle truss model, the formulas for calculating the pure torsional capacity of RC columns were modified, considering the quantitative influence of the stirrup ratio on the size effect.
Rocznik
Strony
art. no. e36, 2022
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
  • The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
autor
  • The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
autor
  • The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
Bibliografia
  • 1. Wang P, Han Q, Du X. Seismic performance of circular RC bridge columns with flexure-torsion interaction. Soil Dyn Earthq Eng. 2014;66:13–30.
  • 2. Koutchoukali NE, Belarbi A. Torsion of high-strength reinforced concrete beams and minimum reinforcement requirement. ACI Struct J. 2001;98(4):462–9.
  • 3. Fang IK, Shiau JK. Torsional behavior of normal-and high-strength concrete beams. ACI Struct J. 2004;101(3):304–13.
  • 4. Chalioris CE. Experimental study of the torsion of reinforced concrete members. Struct Eng Mech. 2006;23(6):713–37.
  • 5. Chiu HJ, Fang IK, Young WT, Shiau JK. Behavior of reinforced concrete beams with minimum torsional reinforcement. Eng Struct. 2007;29(9):2193–205.
  • 6. Bernardo LF, Lopes SM. Torsion in high-strength concrete hollow beams: strength and ductility analysis. ACI Struct J. 2009;106(1):39–48.
  • 7. Li Q, Belarbi A. Seismic behavior of RC columns with interlocking spirals under combined loadings including torsion. Procedia Eng. 2011;14:1281–91.
  • 8. Prakash SS, Li Q, Belarbi A. Behavior of circular and square reinforced concrete bridge columns under combined loading including torsion. ACI Struct J. 2012;109(3):317–28.
  • 9. Huang H, Hao R, Zhang W, Huang M. Experimental study on seismic performance of square RC columns subjected to combined loadings. Eng Struct. 2019;184:194–204.
  • 10. Bažant ZP, Yu Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups: I. Formulation. J Struct Eng. 2005;131(12):1877–85.
  • 11. Jin L, Miao L, Han J, Du XL. Size effect tests on shear failure of interior RC beam-to-column joints under monotonic and cyclic loadings. Eng Struct. 2018;175:591–604.
  • 12. Jin L, Wang T, Jiang X, Du XL. Size effect in shear failure of RC beams with stirrups: Simulation and formulation. Eng Struct. 2019;199:109573.
  • 13. Bažant ZP, Şener S, Prat PC. Size effect tests of torsional failure of plain and reinforced concrete beams. Mater Struct. 1988;21(6):425–30.
  • 14. Kirane K, Singh KD, Bažant ZP. Size effect in torsional strength of plain and reinforced concrete. ACI Struct J. 2016;113(6):1253–62.
  • 15. Vecchio FJ, Collins MP. The modified compression field theory for reinforced concrete element subjected to shear. ACI Struct J. 1986;83:219–31.
  • 16. Mondal TG, Prakash SS. Effect of tension stiffening on the behaviour of reinforced concrete circular columns under torsion. Eng Struct. 2015;92:186–95.
  • 17. De Domenico D. Torsional strength of RC members using a plasticity-based variable-angle space truss model accounting for non-uniform longitudinal reinforcement. Eng Struct. 2021;228:111540.
  • 18. Ministry of Construction of the People’s Republic of China. GB 50010-2010. Code for design of concrete structures. China Construction Industry Press, Beijing 2010 (in Chinese).
  • 19. American Concrete Institute (ACI). Building code requirements for structural concrete. Technical Committee Document No. 318-19, Farmington Hills, Mich; 2019.
  • 20. Canadian Standards Association, Design of Concrete Structures A23.3-04. Rexdale, Ontario: Canadian Standards Association; 2004.
  • 21. Eurocode 2: Design of concrete structures, General rules and rules for buildings. EN 1992-A1-2014. European Standard. 2014.
  • 22. Jin L, Yu WX, Du XL, Zhang S, Li D. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates. Int J Impact Eng. 2019;125:1–12.
  • 23. Pathak P, Zhang YX. Numerical study of structural behavior of fiber-reinforced polymer-strengthened reinforced concrete beams with bond-slip effect under cyclic loading. Struct Concr. 2019;20(1):97–107.
  • 24. Jin L, Chen H, Wang Z, Du X. Size effect on axial compressive failure of CFRP-wrapped square concrete columns: tests and simulations. Compos Struct. 2020;254:112843.
  • 25. Cao X, Wu L, Li Z. Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA. Eng Struct. 2020;209:109980.
  • 26. Huang YJ, Yang ZJ, Chen XW, Liu GH. Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images. Int J Impact Eng. 2016;97:102–15.
  • 27. Jin L, Yu W, Du X, Yang W. Meso-scale simulations of size effect on concrete dynamic splitting tensile strength: influence of aggregate content and maximum aggregate size. Eng Fract Mech. 2020;230:106979.
  • 28. Jin L, Yu W, Li D, Du X. Numerical and theoretical investigation on the size effect of concrete compressive strength considering the maximum aggregate size. Int J Mech Sci. 2021;192:106130.
  • 29. Du X, Jin L, Ma G. Meso-element equivalent method for the simulation of macro mechanical properties of concrete. Int J Damage Mech. 2013;22(5):617–42.
  • 30. Wriggers P, Moftah SO. Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elem Anal Des. 2006;42(7):623–36.
  • 31. Zhou XQ, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate. Int J Solids Struct. 2008;45(17):4648–61.
  • 32. Mishnaevsky JL. Microstructural effects on damage in composites–computational analysis. J Theor App Mech-Pol. 2006;44:533–52.
  • 33. Königsberger M, Pichler B, Hellmich C. Micromechanics of ITZ–aggregate interaction in concrete part I: stress concentration. J Am Ceram Soc. 2014;97(2):535–42.
  • 34. Kim SM, Abu Al-Rub RK. Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cem Concr Res. 2011;41(3):339–58.
  • 35. Šavija B, Pacheco J, Schlangen E. Lattice modeling of chloride diffusion in sound and cracked concrete. Cem Concr Compos. 2013;42(9):30–40.
  • 36. Lubliner J, Oliver J, Oller S, Oñate E. A plastic-damage model for concrete. Int J Solids Struct. 1989;25(3):299–326.
  • 37. Lee J, Fenves GL. Plastic-damage model for cyclic loading of concrete structures. J Eng Mech. 1998;124(8):892–900.
  • 38. Roudsari SS, Hamoush SA, Soleimani SM, Madandoust R. Evaluation of large-size reinforced concrete columns strengthened for axial load using fiber reinforced polymers. Eng Struct. 2019;178:680–93.
  • 39. Santos L, Cardoso H, Caldas RB, Grilo LF. Finite element model for bolted shear connectors in concrete-filled steel tubular columns. Eng Struct. 2020;203:109863.
  • 40. Garboczi EJ, Bentz DP. Digital simulation of the aggregate-cement paste interfacial zone in concrete. J Mater Res. 1991;6(1):196–201.
  • 41. Lai CD, Xie M, Murthy DNP. A modified Weibull distribution. IEEE T Relia. 2003;52(1):33–7.
  • 42. Bažant ZP. Size effect in blunt fracture: concrete, rock, metal. J Eng Mech. 1984;110(4):518–35.
  • 43. Hu X, Wittmann F. Size effect on toughness induced by crack close to free surface. Eng Fract Mech. 2000;65(2–3):209–21.
  • 44. Kim JK. Size effect in concrete specimens with dissimilar initial cracks. Mag Concr Res. 1990;42(153):233–8.
  • 45. Jeng CH. Unified softened membrane model for torsion in hollow and solid reinforced concrete members: modeling precracking and postcracking behavior. J Struct Eng. 2015;141(10):04014243.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f85af2cd-97b5-4467-be1e-0798dfc3e9e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.