Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The volumetric performance of machine tools is limited by the remaining relative deviation between desired and real tool tip position. Being able to predict this deviation at any given functional point enables methods for compensation or counteraction and hence reduce errors in manufacturing and uncertainties for on-machine measurement tasks. Time-efficient identification and quanitification of different contributions to the resulting deviation play a key role in this strategy. The authors pursue the development of an optical sensor system for step diagonal measurement methods, which can be integrated into the working volume of the machine due to its compact size, enabling fast measurements of the axes’ motion error including roll, pitch and yaw and squareness errors without significantly interrupting the manufacturing process. The use of a frequency-modulating interferometer and photosensitive arrays in combination with a Gaussian laser beam allow for measurements at comparable accuracy, lower cost and smaller dimensions compared to state-of-the-art optical measuring appliances for offline machine tool calibration. For validation of the method a virtual machine setup and raytracing simulation is used which enables the investigation of systematic errors like sensor hardware misalignment.
Czasopismo
Rocznik
Tom
Strony
64--73
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Chair of Production Metrology and Quality Management, Aachen, Germany
autor
- Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Chair of Production Metrology and Quality Management, Aachen, Germany
autor
- Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Chair of Production Metrology and Quality Management, Aachen, Germany
autor
- Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Chair of Production Metrology and Quality Management, Aachen, Germany
Bibliografia
- [1] FLETSCHER S., LONGSTAFF A.P., SHAGLUF A., 2015, Derivation of a cost model to aid management of CNC machine tool accuracy maintenance, Journal of Machine Engineering, 15/2, 17-43.
- [2] IBARAKI S., KNAPP W., 2013, Indirect Measurement of Volumetric Accuracy for Three-Axis and Five-Axis Machine Tools, A Review, Kyoto.
- [3] MAYR J., JEDRZEJEWSKI J., UHLMANN E., et al., 2012, Thermal issues in machine tools, CIRP Annals - Manufacturing Technology, 2, 771-791, DOI 10.1016/j.cirp.2012.05.008.
- [4] DELBRESSINE F., HAITJEMA H., KNAPP W., et al., 2008, Geometric error measurement and compensation of machines–An update, CIRP Annals - Manufacturing Technology, 2, 660-675, DOI 10.1016/j.cirp.2008.09.008.
- [5] ERTL F., LENZ K.J., Beschreibung und rechnerunterstuetzte Korrektur der Fehler von mehrachsigen Maschinen, Feinwerktechnik und Messtechnik, 85, 239-243.
- [6] HOCKEN R. J., 1993, Software Compensation of Pecision Machines, A Report from Precision Engineering Laboratory UNC Charlotte to National Institute of Standards and Technology.
- [7] ESTLER W.T., FORBES A., GALETTO M., et al., 2016, Advances in Large-Scale Metrology – Review and future trends, CIRP Annals–Manufacturing Technology, 2, 643-665, DOI 10.1016/j.cirp.2016.05.002.
- [8] PETEREK M., SCHMITT R., 2015, Traceable Measurements on Machine Tools–Thermal Influences on Machine Tool Structure and Measurement Uncertainty, Procedia CIRP, 576-580, DOI 10.1016/j.procir.2015.06.087.
- [9] KWASNY W., TUREK P., JEDRZEJEWSKI J., 2011, Survey of machine tool error measuring methods, Journal of Machine Engineering, 11/4, 7-38.
- [10] WANG C., 2000, Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part I, Basic theory, Review of Scientific Instruments, 10, 3933, DOI 10.1063/1.1290504.
- [11] LIOTTO G., WANG C., 2003, A theoretical analysis of 4 body diagonal displacement measurement and sequential step diagonal measurment, Laser Metrology and Machine Performance, VI, 44.
- [12] CHAPMAN M.A., 2003, Limitations of laser diagonal measurements, Precision Engineering, 4, 401-406, DOI 10.1016/S0141-6359(03)00041-2.
- [13] SOONS J.A., 2005, Analysis of the step-diagonal test, Metal Cutting Theory and Practice, Third Edition.
- [14] HATA T., IBARAKI S., 2010, A new formulation of laser step diagonal measurement – Three-dimensional case, Precision Engineering, 3, 516–525, DOI 10.1016/j.precisioneng.2010.02.004.
- [15] EDLÉN B., 1966, The Refractive Index of Air, Metrologia, 2, 71-80.
- [16] SCHOTT North America Inc., 2014, Refractive Index and Dispersion, Duryea.
- [17] BUI C.B., HWANG J., LEE C.-H., et al., 2012, Three-face step-diagonal measurement method for the estimation of volumetric positioning errors in a 3D workspace, International Journal of Machine Tools and Manufacture, 40-43, DOI 10.1016/j.ijmachtools.2012.03.005.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f85a4c5d-5eec-4cbc-b200-f0595d5174fc