PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Double-layer microwave absorber based on nanocrystalline CoFe2O4 and CoFe2O4/PANI multi-core/shell composites

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organic-inorganic nano-CoFe2O4/PANI (polyaniline) multi-core/shell composites have been successfully synthesized by chemical oxidative polymerization of aniline. The characterization results showed that the ferrite nanocrystals were efficiently embedded in PANI. The electromagnetic parameters of the composites were measured by a vector network analyser in the frequency range of 2 GHz to 18 GHz. Double-layer absorbers based on the CoFe2O4/PANI composite (matching layer) and calcined CoFe2O4 ferrite (absorbing layer) have been designed. The reflection loss of the microwave absorbers of both single layer and double-layer with a total thickness of 2.0 mm and 2.5 mm was calculated according to transmission-line theory. The results indicated that the minimum reflection loss of the CoFe2O4/PANI composite was −19.0 dB at 16.2 GHz at the thickness of 2.0 mm and −23.6 dB at 13.1 GHz at the thickness of 2.5 mm, respectively. The minimum reflection loss for double-layer absorbers reached −28.8 dB at 16.2 GHz at the total thickness of 2.0 mm, and −31.1 dB at 12.8 GHz at the total thickness of 2.5 mm. The absorption bandwidth under −10 dB was 4.2 GHz (13.8 GHz to 18.0 GHz) and 5.5 GHz (10.3 GHz to 15.8 GHz), respectively. The results show that the reflection loss and absorption bandwidth of the double-layer absorbers are obviously enhanced compared to corresponding single layer absorbers.
Wydawca
Rocznik
Strony
94--104
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Science and Technology on Near-Surface Detection Laboratory, Wuxi 214035, China
autor
  • School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
autor
  • School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
autor
  • School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
autor
  • Science and Technology on Near-Surface Detection Laboratory, Wuxi 214035, China
autor
  • Science and Technology on Near-Surface Detection Laboratory, Wuxi 214035, China
autor
  • Science and Technology on Near-Surface Detection Laboratory, Wuxi 214035, China
Bibliografia
  • [1] HU Q., TONG G.X., WUW H., LIU F.T., QIAN H.S., HONG D.Y., CrystEngComm,15 (2013), 1314.
  • [2] REN Y.Y., YANG L., WANG L.D., XU T.T., WU G.L., WU H.J., Powder Technol., 281 (2015), 20.
  • [3] WANG G.S., HE S., LUO X., WEN B., LU M.M., GUO L., CAO M.S., RSC Adv., 3 (2013), 18009.
  • [4] ABBAS S.M., CHANDRA M., VERMA A., CHATTERJEE R., GOEL T.C., Compos. Part A-Appl. S., 37 (2006), 2148.
  • [5] CHOI S.H., OH J.H., KO T., J. Magn. Magn. Mater., 272 – 276 (2004), 2233.
  • [6] WANG G.Q., WANG L.F., GAN Y.L., LU W., Appl. Surf. Sci., 273 (2013), 744.
  • [7] WANG A.M., WANG W., LONG C., LI W., GUAN J.G., GU H.S., XU G.X., J. Mater. Chem. C, 2 (2014), 3769.
  • [8] LIU T., PANG Y., ZHU M., KOBAYASHI S., Nanoscale, 6 (2014), 2447.
  • [9] WEN S.L., ZHAO X.C., LIU Y., CHENG J.W., LI H., RSC Adv., 4 (2014), 40456.
  • [10] ZHU W.M., WANG L., ZHAO R., REN J.W., LU G.Z., WANG Y.Q., Nanoscale, 3 (2011), 2862.
  • [11] LIU J.L., ZHANG J., ZHANG P., WANG S.Y., LU C.Y., LI Y.Q., ZHANG M., Mater. Lett., 158 (2015), 53.
  • [12] GU X., ZHU W.M., JIA C.J., ZHAO R., SCHMIDT W., WANG Y.Q., Chem. Commun., 47 (2011), 5337.
  • [13] SILVA J.E.M., NASAR R.S., NASAR M.C., FIRME C.L., ARAUJO J.H., J. Magn. Magn. Mater., 394 (2015), 274.
  • [14] MOSLEH Z., KAMELI P., POORBAFERANI A., RANJBAR M., SALAMATI H., J. Magn. Magn. Mater., 397 (2016), 101.
  • [15] MENG P.Y., XIONG K., JU K., LI S.N., XU G.L., J. Magn. Magn. Mater., 385 (2015), 407.
  • [16] CHEN W., WU W.W., LIU S.Q., XU J.W., LIU D.S., WU X.H., ZHOU Y., WU J., Mat. Sci. Semicon. Proc., 39 (2015), 544.
  • [17] HUANG X.G., ZHANG J., LAI M., SANG T.Y., J. Alloy. Compd., 627 (2015), 367.
  • [18] REDDY M. P., MOHAMED A.M.A., Micropor. Mesopor. Mat., 215 (2015), 37.
  • [19] CAI X.D., WANG J.J., LIANG G.H., GUO J.S., HOU Y.S., GAO H.T., YU L., J. Alloy. Compd., 636 (2015), 348.
  • [20] SHEN X.Q., SONG F.Z., YANG X.C., WANG Z., JING M.X., WANG Y.D., J. Alloy. Compd., 621 (2015), 146.
  • [21] LI N., HU C.W., CAO M.H., Phys. Chem. Chem. Phys., 15 (2013), 7685.
  • [22] WANG H.Y., ZHU D.M., ZHOU W.C., LUO F., J. Magn. Magn. Mater., 393 (2015), 445.
  • [23] SHEN J.H., CHEN K.Y., LI L.C., WANG W.X., JIN Y., J. Alloy. Compd., 615 (2014), 488.
  • [24] LUO J.H, GAO D.D., J. Magn. Magn. Mater., 368 (2014), 82.
  • [25] LIU P.B., HUANG Y., RSC Adv., 3 (2013), 19033.
  • [26] LU M.M., CAO W.Q., SHI H.L., FANG X.Y., YANG J., HOU Z.L., JIN H.B., WANG W.Z., YUAN J., CAO M.S., J. Mater. Chem. A, 2 (2014), 10540.
  • [27] LIU G., WANG L.Y., CHEN G.M., HUA S.C., GE C.Q., ZHANG H., WU R.B., J. Alloy. Compd., 514 (2012), 183.
  • [28] ZONG M., HUANG Y., ZHAO Y., SUN X., QU C.H., LUO D.D., ZHENG J.B., RSC Adv., 3 (2013), 23638.
  • [29] ZHU Z.T., SUN X., XUE H.R., GUO H., FAN X.L., PAN X.C., HE J.P., J. Mater. Chem. C, 2 (2014), 6582.
  • [30] SHAH A., WANG Y.H., HUANG H., ZHANG L., WANG D.X., ZHOU L., DUAN Y.P., DONG X.L., ZHANG Z.D., Compos. Struct., 131 (2015), 1132.
  • [31] LI G., XIE T.S., YANG S.L., JIN J.H., JIANG J.M., J. Phys. Chem. C, 116 (2012), 9196.
  • [32] ZHOU H., WANG J.C., ZHUANG J.D., LIU Q., Nanoscale, 5 (2013), 12502.
  • [33] WU H.J., WANG L.D., GUO S.L., WANG Y.M., SHEN Z.Y., Mater. Chem. Phys., 133 (2012), 965.
  • [34] WEI C.Y., SHEN X.Q., SONG F.Z., ZHU Y.W., WANG Y.D., Mater. Design, 35 (2012), 363.
  • [35] DAS S., NAYAK G.C., SAHU S.K., ROUTRAY P.C., ROY A.K., BASKEY H., J. Magn. Magn. Mater., 377 (2015), 111.
  • [36] WANG T., QIAO L., HAN R., ZHANG Z.Q., J. Magn. Magn. Mater., 324 (2012), 3209.
  • [37] NI Q.Q., JET HONG MELVIN G., NATSUKI T., Ceram. Int., 41 (2015), 9885.
  • [38] LIU Y., LIU X.X., WANG X.J., J. Alloy. Compd., 584 (2014), 249.
  • [39] WANG H.J., LU Y., Synthetic Met., 162 (2012), 1369.
  • [40] GU H.B., WEI H.G., GUO J., HALDOLAARACHIGE N., YOUNG D.P., WEI S.Y., GUO Z.H., Polymer, 54 (2013), 5974.
  • [41] EL-OKR M.M., SALEM M.A., SALIM M.S., EL-OKR R.M., ASHOUSH M., TALAAT H.M., J. Magn. Magn. Mater., 323 (2011), 920.
  • [42] PRADEEP A., PRIYADHARSINI P., CHANDRASEKARAN G., J. Magn. Magn. Mater., 320 (2008), 2774.
  • [43] AHARONI A., J. Appl. Phys., 69 (1991), 7762.
  • [44] SHEN G.Z., XU M., XU Z., Mater. Chem. Phys., 105 (2007), 268.
  • [45] MESHRAM M. R., AGRAWAL N.K., SINHA B., MISRA P.S., J. Magn. Magn. Mater., 271 (2004), 207.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f85777dc-8a1e-43ed-bb0e-7674753949dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.