PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal characterization of halloysite materials for porous ceramic preforms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study was to investigate the possibility of sintering raw (natural) halloysite and pure halloysite to produce porous ceramic preforms, and determination of sintering temperature based on the results of investigations into thermal effects, linear changes and phase transitions. Design/methodology/approach: Due to mullitisation ability of halloysite at high temperature, alternative applications based on the sintering technology (including the production of reinforcement of metal matrix composites) are being searched for. Pure halloysite and Dunino halloysite were selected for the study. Findings: Pure halloysite, characterized by low impurities, dimensional stability during sintering, softening temperature above 1500ºC and ability to transform into mullite at temperatures above 950ºC could be used as a base for the production of sintered, porous mullite preforms. Research limitations/implications: Presence of impurities in Dunino halloysite, contribute to the shift of the sintering temperature towards lower temperatures and caused a rapid and uncontrolled shrinkage of the sample and the appearance of the softening temperature at 1300ºC. Practical implications: Based on the research of thermal (DTA/TG, linear changes in high-temperature microscopy) and XRD studies it is possible to determine the sintering temperature of pure halloysite to manufacture the porous mullite preforms with open porosity. Originality/value: The received results show the possibility of obtaining the new mullite preforms based on pure halloysite.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Łukasiewicz - Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, ul. Toszecka 99, 44-100 Gliwice, Poland
autor
  • Łukasiewicz - Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, ul. Toszecka 99, 44-100 Gliwice, Poland
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
autor
  • Łukasiewicz - Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, ul. Toszecka 99, 44-100 Gliwice, Poland
autor
  • Division of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, G. Matula, A.D. Dobrzańska- Danikiewicz, P. Malara, M. Kremzer, B. Tomiczek, M. Kujawa, E. Hajduczek, A. Achtelik-Franczak, L.B. Dobrzański, J. Krzysteczko, Composite materials infiltrated by aluminium alloys based on porous skeletons from alumina, mullite and titanium produced by powder metallurgy techniques, in: L.A. Dobrzański (ed.), Powder Metallurgy – Fundamentals and Case Studies, InechOpen, Rijeka, Croatia, 2017, 95-137. DOI: http://dx.doi.org/10.5772/65377
  • [2] K.M. Sree Manu, L. Ajay Raag, T.P.D. Rajan, Manoj Gupta, B.C. Pai, Liquid metal infiltration processing of metallic composites: a critical review, Metallurgical and Materials Transactions B 47 (2016) 2799-2819. DOI: https://doi.org/10.1007/s11663-016-0751-5
  • [3] K. Lades, Piston useful for an internal combustion engine, preferably for gasoline engine, comprises ring groove, which is designed with infused reinforcement comprising metal infiltrated, preferably steel- and/or gray cast-infiltrated ceramic, DE102012214910A1.
  • [4] P. Długosz, P. Darłak, Manufacture of lightweight components for a composite protective armour using squeeze casting technologies, Fast Tracked Vehicles 38/3 (2015) 141-162.
  • [5] P. Dudek, P. Darłak, P. Długosz, A. Fajkiel, Porous ceramic preforms dedicated for local reinforcement subjected to the squeeze casting infiltration process, Maintenance Problems 3 (2015) 75-82.
  • [6] L.A. Dobrzański, M. Kremzer, A. Nagel, B. Huchler, Fabrication of ceramic preforms based on Al2O3 CL 2500 powder, Journal of Achievements of Materials and Manufacturing Engineering 18/1-2 (2006) 71-74.
  • [7] L.A. Dobrzański, M. Kremzer, A. Nagel, Structure and properties of ceramic preforms based on Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 7-13.
  • [8] K. Naplocha, K. Granat, The structure and properties of hybrid preforms for composite, Journal of Achieve-ments in Materials and Manufacturing Engineering 22/2 (2007) 35-38.
  • [9] M. Potoczek, R.E. Śliwa, J. Myalski, J. Śleziona, Metal-ceramic interpenetrating composites produced by pressure infiltration of metal into ceramic foams, Ores and Non-Ferrous Metals 54/11 (2009) 688-692.
  • [10] A.J. Dolata, M. Dyzia, Z. Jaegermann, Structure and physical properties of alumina ceramic foams designed for centrifugal infiltration process, Composites Theory and Practice 17/3 (2017) 136-143.
  • [11] N. Sobczak, L. Jaworska, M. Podsiadło, B. Smuk, R. Nowak, P. Kurtyka, A. Twardowska, Nitride and carbide preforms for infiltration process, Archives of Materials Science and Engineering 28/11 (2007) 653-656.
  • [12] B. Tomiczek, M. Kujawa, G. Matula, M. Kremzer, T. Tański, L.A. Dobrzański, Aluminium AlSi12 alloy matrix composites reinforced by mullite porous preforms, Materialwissenschaft und Werkstofftechnik 46/4-5 (2015) 368-376. DOI: https://doi.org/10.1002/mawe.201500411
  • [13] J. Guan, L. Qi, J. Liu, J. Zhou, X. Wei, Threshold pressure and infiltration behavior of liquid metal into fibrous preform, Transactions of Nonferrous Metals Society of China 23/11 (2013) 3173-3179. DOI: https://doi.org/10.1016/S1003-6326(13)62849-6
  • [14] C.Y. Chen, G.S. Lan, W.H. Tuan, Microstructural evolution of mullite during the sintering of kaolin powder compacts, Ceramics International 26/7 (2000) 715-720. DOI: https://doi.org/10.1016/S0272- 8842(00)00009-2
  • [15] C. Venturelli, M. Paganelli, Sintering behaviour of clays for the production of ceramics, Process Engineering 84/5 (2007) 1-4.
  • [16] P. Yuan, D. Tan, F. Annabi-Bergaya, W. Yan, M. Fan, D. Liu, H. He, Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating, Clays and Clay Minerals 60/6 (2012) 561-573. DOI: https://doi.org/10.1346/CCMN.2012.0600602
  • [17] D.J. Duval, S.H. Risbud, J.F. Shackelford, Mullite, in: J.F. Shackelford, R.H. Doremus (eds.), Ceramic and Glass Materials, 2008.
  • [18] H. Schneider, S. Komarneni, Mullite, Wiley-VCH, Weinheim, 2005.
  • [19] P. Taźbierski, C. Dziubak, A. Oziębło, Mullite powder synthesis by solid state reaction in powder bed, Glass and Ceramics 66/4 (2015) 21-23 (in Polish).
  • [20] L. Andrini, R. Moreira Toja, M.S. Conconi, F.G. Requejo, N.M. Rendtorff, Halloysite nanotube and its firing products: Structural characterization of halloysite, metahalloysite, spinel type silicoaluminate and mullite, Journal of Electron Spectroscopy and Related Phenomena 234 (2019) 19-26. DOI: https://doi.org/10.1016/j.elspec.2019.05.007
  • [21] A.K. Chakraborty, DTA study of preheated kaolinite in the mullite formation region, Thermochimica Acta 398/1-2 (2004) 203-209. DOI: https://doi.org/10.1016/S0040-6031(02)00367-2
  • [22] J. Ouyang, Z. Zhou, Y. Zhang, H. Yang, High morphological stability and structural transition of halloysite (Huan, China) in heat treatment, Applied Clay Science 101 (2014) 16-22. DOI: https://doi.org/10.1016/j.clay.2014.08.010
  • [23] M. Kujawa, Infiltrated aluminium alloy matrix composites reinforced with sintered halloysite nanotubes, PhD thesis, Silesian University of Technology, Gliwice, Poland, 2015.
  • [24] M. Kujawa, L.A. Dobrzański, G. Matula, M. Kremzer, B. Tomiczek, Manufacturing of Porous Ceramic Preforms Based on Halloysite Nanotubes (HNTs), Archives of Metallurgy and Materials 61/2B (2016) 917- 922. DOI: https://doi.org/10.1515/amm-2016-0155
  • [25] S. Hillier, R. Brydson, E. Delbos, T. Fraser, N. Gray, H. Pendlowski, I. Phillips, J. Robertson, I. Wilson, Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs), Clay Minerals 51/3 (2016) 325-350. DOI: https://doi.org/10.1180/claymin.2016.051.3.11
  • [26] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite - a review, Journal of the European Ceramic Society 28/2 (2008) 329-344. DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.03.017
  • [27] J. Lis, R. Pampuch, Sintering, The AGH University of Science and Technology Press, Cracow, 2000.
  • [28] P. Yuan, D. Tan, F. Annabi-Bergaya, Properties and applications of halloysite nanotubes: recent research advances and future prospects, Applied Clay Science 112-113 (2015) 75-93. DOI: https://doi.org/10.1016/j.clay.2015.05.001
  • [29] P. Yuan, A. Thill, F. Bergaya (eds.), Nanosized tubular clay minerals: halloysite and imogolite, Elsevier, Amsterdam, 2016.
  • [30] M. Lutyński, P. Sakiewicz, S. Lutyńska, Charac-terization of diatomaceous earth and halloysite resources of Poland, Minerals 9/11 (2019) 670. DOI: https://doi.org/10.3390/min9110670
  • [31] R. Ceylantekin, R. Başar, Solid solution limit of Fe2O3 in mullite crystals, produced from kaolin by solid state reactions, Ceramics International 44/7 (2018) 7599- 7604. DOI: https://doi.org/10.1016/j.ceramint.2018.01.178
  • [32] K.O. Ajanaku, O. Aladesuyi, M. Pal, S.K. Das, Evaluation of Nigerian source of kaolin as a raw material for mullite synthesis, Oriental Journal of Chemistry 32/3 (2016) 1571-1582. DOI: http://dx.doi.org/10.13005/ojc/320333
  • [33] W.E. Lee, G.P. Souza, C.J. McConville, T. Tarvornpa-nich, Y. Iqbal, Mullite formation in clays and clay-derived vitreous ceramics, Journal of the European Ceramic Society 28/2 (2008) 465-471. DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.03.009
  • [34] B.A. Huchler, Pressure infiltration behaviour and properties of aluminium alloy - Oxide ceramic preform composites, PhD thesis, University of Birmingham, Birmingham, United Kingdom, 2009.
  • [35] R. Suwak, High temperature microscope research, Refractory Materials 2 (2015) 43-48.
  • [36] E. Joussein, S. Petit, C. Fialips, P. Vieillard, D. Righi, Differences in the dehydration-rehydration behavior of halloysites: New evidence and interpretations, Clays and Clay Minerals 54/4 (2006) 473-484. DOI: https://doi.org/10.1346/CCMN.2006.0540408
  • [37] Y. Wang, H. Liu, H. Cheng, J. Wang, Densification behavior and microstructure of mullite obtained from diphasic Al2O3-SiO2 gels, Ceramics International 40/8B (2014) 12789-12796. DOI: https://doi.org/10.1016/j.ceramint.2014.04.133
  • [38] M.V.M. Magliano, V.C. Pandolfelli, Refractories mullitization with different sources of reactants - review, Cerâmica 56/340 (2010) 368-375. DOI: https://doi.org/10.1590/S0366-69132010000400009
  • [39] K.C. Liu, G. Thomas, Time-temperature-transformation curves for kaolinite α-alumina, Journal of the American Ceramic Society 77/6 (1994) 1545- 1552. DOI: https://doi.org/10.1111/j.1151- 2916.1994.tb09755.x
  • [40] P.C. Yu, Y.W. Tsai, F.S. Yen, C.L. Huang, Thermal reaction of cristobalite in nano SiO2/α-Al2O3 powder systems for mullite synthesis, Journal of the American Ceramic Society 97/8 (2014) 2431-2438. DOI: https://doi.org/10.1111/jace.12989
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8556772-ed74-494d-8496-aad1c97d82c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.