PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption mechanism of sodium oleate on titanium dioxide coated sensor surface using quartz crystal microbalance with dissipation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quartz Crystal Microbalance with Dissipation (QCM-D) was firstly applied to investigate the adsorption mechanism of sodium oleate on TiO2 coated sensor surface. The effects of pH value, sodium oleate concentration, and temperature on TiO2 coated sensor surface were evaluated systematically using the QCM-D technique. Zeta potential, surface tension, adsorption isotherms, and adsorption thermodynamics were employed to characterize the adsorption process. The results showed the advantages of QCM-D on the investigation of the adsorption process. Additionally, the electrostatic equilibrium adsorption data was well matched to the Langmuir isotherm. Based on the thermodynamic analysis, adsorption was a spontaneous and endothermic physisorption process.
Rocznik
Strony
597--608
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
autor
  • School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
  • National Engineering Research Center of Coal Preparation and Purification, Xuzhou 221116, Jiangsu, China
autor
  • National Engineering Research Center of Coal Preparation and Purification, Xuzhou 221116, Jiangsu, China
autor
  • National Engineering Research Center of Coal Preparation and Purification, Xuzhou 221116, Jiangsu, China
autor
  • School of Chemical and Environmental Engineering, University of Mining and Technology (Beijing), Beijing, China, 100083
Bibliografia
  • AZEVEDO D., ELICH J., MILLER, J.D , 1999, The effect of pH on pulping and flotation of mixed office wastepaper, Journal of Pulp and Paper Science, 25(9), 317- 320.
  • ALAGHA L., WANG S., YAN L., XU Z., MASLIYAH J., 2013, Probing adsorption of polyacrylamide-based polymers on anisotropic basal planes of kaolinite using quartz crystal microbalance, Langmuir, 12, 3989–3998.
  • AUTA M., HAMEED B.H., 2014, Chitosan–clay composite as highly effective and low cost adsorbent for batch and fixed-bed adsorption of methylene blue, Chem. Eng. J., 237, 350–361.
  • BEREKET G., YURT A., 2002, Inhibition of the corrosion of low carbon steel in acidic solution by selected quaternary ammonium compounds, Anti-corrosion Methods Mater, 3, 210–220.
  • BUTTRY D.A., WARD M.D., 1992, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance, Chem. Rev., 92, 1355–1379.
  • CHANTURIA V.A., KONDRAT’EV S.A., 2014, Mechanisms of nonsulfide mineral flotation with oleinic acid, J. Min. Sci., 1, 163–170.
  • CUI L.M., HU L.H., GUO X.Y., ZHANG Y.K., WANG Y.G., WEI Q., DU B., 2014, Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesium hydroxyapatite/ferroferric oxide nano-composites with easy magnetic separation assistance, J. Mol. Liq., 198, 157–163.
  • DENG M.J., XU Z.H., LIU Q.X., 2014. Impact of gypsum supersaturated process water on the interactions between silica and zinc sulphide minerals. Miner. Eng., 55, 172–180.
  • EBARA Y., OKAHATA Y., 1994, A kinetic study of concanavalin a binding to glycolipid monolayers by using a quartz-crystal microbalance, J. Am. Chem. Soc., 116, 11209–11212.
  • FAN G.X., LIU J.T., CAO Y.J., HUO T., 2014, Optimization of fine ilmenite flotation performance in a cyclonic-static micro-bubble flotation column, Physicochem. Probl. Miner. Process., 2, 823−834.
  • FAN X.F., WATERS K.E., ROWSON N.A., PARKER D.J., 2009, Modification of ilmenite surface chemistry for enhancing surfactants adsorption and bubble attachment, J. Colloid Interf. Sci., 329, 167–172.
  • FAN X., ROWSON N.A., 2000, The effect of Pb(NO3)2 of ilmenite on ilmenite flotation, Miner. Eng., 2, 205–215.
  • FAN X., ROWSON N.A., 2002, Surface modification and column flotation of a massive ilmenite ore, Can. Metall. Quart., 2, 133–142.
  • FLEMING B.D., BIGGS S., WANLESS E.J., 2001, Slow organization of cationic surfactant adsorbed to silica from solutions far below the CMC, J. Phys. Chem. B., 39, 9537–9540.
  • FU J.W., CHEN Z.H., WANG M.H., LIU S.J., ZHANG J.H., ZHANG J.N., HAN R.P., XU Q., 2015, Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis, Chem. Eng. J., 259, 53–61.
  • GUERRA D.J.L., MELLO I., FREITAS L.R., RESENDE R., SILVA R.A.R., 2014, Equilibrium, thermodynamic, and kinetic of Cr(VI) adsorption using a modified and unmodified bentonite clay, Int. J. Mining Sci. Technol., 24, 525–535.
  • HACIFAZLIOGLU H., SUTCU H., 2007, Optimization of some parameters in column flotation and a comparison of conventional cell and column cell in terms of flotation performance, J. Chin. Inst. Chem. Eng., 38, 287–293.
  • IRWIN E.F., HO J.E., KANE S.R., HEALY K.E., 2005, Analysis of interpenetrating polymer networks via quartz crystal microbalance with dissipation monitoring, Langmuir, 21, 5529–5536.
  • KANAZAWA K.K., GORDON J.G., 1985, The oscillation frequency of a quartz resonator in contact with a liquid, Anal. Chim. Acta., 175, 99–105.
  • KIM H.J., KWAK S., KIM Y.S., SEO B.I., KIM E.R., LEE H., 1998, Adsorption kinetics of alkanethiols studied by quartz crystal microbalance, Thin Solid Films, 327–329, 191–194.
  • KOU J., TAO D., XU G., 2010, Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D, Int. J. Miner. Process., 95, 1–9.
  • LI C., LIANG B., GUO L.H., 2006, Effect of mechanical activation on the dissolution of Panzhihua ilmenite, Miner. Eng., 19, 1430–1438.
  • LILJA M., BUTT U, SHEN Z.J., BJOORN D., 2013, Nucleation and growth of hydroxyapatite on arc-deposited TiO2 surfaces studied by quartz crystal microbalance with dissipation, Appl. Surf. Sci., 284, 1–6.
  • MARX K.A., 2003, Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecules, 4, 1099–1120.
  • NEZU T., MASUYAMA T., SASAKI K., SAITOH S., TAIRa M., ARAKI Y., 2008, Effect of pH and addition of salt on the adsorption behavior of lysozyme on gold, silica, and titania surfaces observed by quartz crystal microbalance with dissipation monitoring, Dent. Mater. J., 4, 573–580.
  • OMIDVAR H., MIRZAEI F.K., RAHIMI M.H., Z. SADEGHIAN, 2012, A method for coating carbon nanotubes with titanium, New Carbon Mater., 6, 401–408.
  • PADILLA-ORTEGA E., LEYVA-RAMOs R., MENDOZA-BARRON J., 2014, Role of electrostatic interactions in the adsorption of cadmium (II) from aqueous solution onto vermiculite, Appl. Clay Sci., 88–89, 10–17.
  • PARKER M., STEC B., 2012, An alternative approach to plating of titanium and Ti alloys using carbon foam substrate, Metal Finish., 3, 19–22.
  • RYU D.Y., FREE M.L., 2003, The importance of temperature and viscosity effects for surfactant adsorption measurements made using the electrochemical quartz crystal microbalance, J. Colloid Interf. Sci., 264, 402–406.
  • SAKAI K., SMITH E.G., WEBBER G.B., SCHATZ C., WANLESS E.J., BUTUN V., ARMES S.P., BIGGS S., 2006, pH-responsive diblock copolymer micelles at the silica/aqueous solution interface: adsorption kinetics and equilibrium studies, J. Phys. Chem., 110, 14744–14753.
  • SANTANA R., RIBEIRO J., SANTOS M., REIS A., ATAÍDE C., BARROZO M.A., 2012, Flotation of fine apatitic ore using microbubbles, Sep. Purif. Technol., 98, 402–409.
  • SAUERBREY G., 1959, Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung, Zeitschrift für Physik, 2, 206–222.
  • SCHUMACHER R., BORGES G., KANAZAWA K.K., 1985, The quartz microbalance: a sensitive tool to probe surface reconstructions on gold electrodes in liquid, Surf. Sci. Lett., 1, 621–626.
  • SIMBECK T., THOMAIER S., STOCK C., 2011, Measurement of adsorption kinetics of benzotriazole on copper surfaces via impedance scanning quartz crystal microbalance studies, Electrochem. Commun., 8, 803–805.
  • SOMASUNDARAN P., HUANG L., 2000, Adsorption/aggregation of surfactants and their mixtures at solid liquid interfaces, Adv. Colloid Interface, 88, 179–208.
  • SONG W.L., ZHU Z., MAO Y.N., ZHANG S.S., 2014, A sensitive quartz crystal microbalance assay of adenosine triphosphate via DNA zyme-activated and aptamer-based target-triggering circular amplification, Biosens. Bioelectron., 53, 288–294.
  • STRYDOM S. J., OTTO D. P., STIEGER N., AUCAMP M. E., LIEBENBERG W., VILLIERS M. M. DE, 2014, Self-assembled macromolecular nanocoatings to stabilize and control drug release from nanoparticles, Powder Technol., 256, 470–476.
  • VITTORIAS E., KAPPL M., BUTT H., JOHANNSMANN D., 2010, Studying mechanical microcontacts of fine particles with the quartz crystal microbalance, Powder Technol., 203, 489–502.
  • YAKOVLEVA A. A., CHYONG S. N., 2013, Kinetic features of the adsorption of sodium oleate on talc, Russ. J. Physical Chemistry A., 11, 1916–1920.
  • YANG Z.P., SI S.H., ZHANG C.J., 2007, Quartz crystal microbalance studies on bilirubin adsorption on self-assembled phospholipid bilayers, J. Colloid Interf. Sci., 305, 1–6.
  • YAO Y.J., XU F.F., CHEN M., XU Z.X., ZHU Z.W., 201, Adsorption behavior of methyleneblue on carbon nanotubes, Bioresour. Technol., 101, 3040–3046.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f854b5b1-3c29-4711-8510-ee9696900fe1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.