Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper describes nonlinear vibrations of Euler-Bernoulli beams interacting with a periodic viscoelastic foundation. The original model equations with highly oscillating periodic coefficients are transformed using the tolerance modelling technique. Newly delivered equations have constant coefficients and describe macro-dynamics of the beam including the effect of the microstructure size. The main purpose of this paper is to propose an equivalent approximate model describing the nonlinear vibrations of a beam interacting with a periodic viscoelastic subsoil.
Czasopismo
Rocznik
Tom
Strony
art. no. 2018030
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
autor
- Department of Structural Mechanics, Łódź University of Technology, al. Politechniki 6, 90-924 Łódź, Poland
autor
- Department of Structural Mechanics, Łódź University of Technology, al. Politechniki 6, 90-924 Łódź, Poland
autor
- Department of Structural Mechanics, Łódź University of Technology, al. Politechniki 6, 90-924 Łódź, Poland
Bibliografia
- 1. J. Awrejcewicz, A. V. Krysko, J. Mrozowski, O. A. Saltykova, M. V. Zhigalov, Analysis of regular and chaotic dynamics of the Euler-Bernoulli beams using finite difference and finite element methods, Acta Mechanica Sinica, 27 (2011) 36 - 43.
- 2. N. S. Bakhvalov, G. P. Panasenko, Averaging of processes in periodic media, Nauka, Moskwa 1984 (in Russian).
- 3. A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, NorthHolland, Amsterdam 1978.
- 4. T. Chen, Investigations on flexural wave propagation of a periodic beam using multi-reflection method, Archive of Applied Mechanics 83, 2 (2013) 315 - 329.
- 5. Ł. Domagalski, J. Jędrysiak, Nonlinear vibrations of periodic beams, Journal of Theoretical and Applied Mechanics, 54 (2016) 1095 - 1108.
- 6. M. Hajianmaleki, M. S. Quatu, Vibrations of straight and curved composite beams: A review, Composite Structures, 100 (2013) 218 - 232.
- 7. W. M. He, W. Q. Chen, H. Qiao, Frequency estimate and adjustment of composite beams with small periodicity, Composites: Part B, 45 (2013) 742 - 747.
- 8. J. Jędrysiak, Modelling of dynamic behaviour of microstructured thin functionally graded plates, Thin-Walled Structures, 7 (2013) 71 - 102.
- 9. V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer Verlag, Berlin-Heidelberg-New York 1994.
- 10. K. Mazur-Śniady, C. Woźniak, E. Wierzbicki, On the modelling of dynamic problems for plates with a periodic structure, Archive of Applied Mechanics, 74 (2004) 179 - 90.
- 11. K. Mazur-Śniady, Macro-dynamics of micro-periodic elastic beams, Journal of Theoretical and Applied Mechanics, 31 (1993) 781 - 793.
- 12. Y. Z. Wang, F. M. Li, Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory, International Journal of Non-Linear Mechanics, 61 (2014) 74 - 79.
- 13. C. Woźniak et al (eds.), Mathematical modelling and analysis in continuum mechanics of microstructured media, Silesian University of Technology Press, Gliwice 2010.
- 14. H. J. Xiang, Z. F. Shi, Analysis of flexural vibration band gaps in periodic beams using differential quadrature method, Computers and Structures, 87 (2009) 1559 - 1566.
- 15. D. L. Yu, J. H. Wen, H. J. Shen, Y. Xiao, X. S. Wen, Propagation of flexural wave in periodic beam on elastic foundations, Physics Letters A, 376 (2012) 626 - 630.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f853a09f-4525-440d-a9a2-f23df2122420