Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Organic phase change materials (PCMs), which are typically used as the accumulating material in latent heat thermal energy storage, provide chemical and thermal stability, but have low thermal conductivity. This limits heat transfer rates and prolongs storage charging/discharging time. A method to improve the thermal conductivity of organic PCMs is to add nanomaterials with high thermal conductivity. The paper presents the research on the effect of the addition of graphene nanoparticles (GNPs) on the thermal conductivity of organic PCM (RT28 HC), and its energy storage properties. The transient hot wire and the pipe Poensgen apparatus methods were used to measure thermal conductivity, and the differential scanning calorimetry method was used to determine the heat capacity and phase change temperature. The achieved characteristics of thermal conductivity depending on the amount of added graphene nanoparticles (and stabilizer) indicate that GNPs allow to increase the thermal conductivity on average by 26–87% in the solid state and by 7–28% in the liquid, but this reduces the PCM heat capacity. Therefore, the paper indicates what mass fraction of dopants is optimal to achieve the greatest improvement in thermal conductivity of RT28 HC and its smallest reduction in heat capacity, to use this nano-enhanced PCM in practice.
Czasopismo
Rocznik
Tom
Strony
103--121
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
- [1] Rolka P., Przybylinski T., Kwidzinski R., Lackowski M.: The heat capacity of lowtemperature phase change materials (PCM) applied in thermal energy storage systems. Renew. Energ. 172(2021), 541–550. doi: 10.1016/j.renene.2021.03.038
- [2] Lizana J., Chacartegui R., Barrios-Padura A., Ortiz C.: Advanced low-carbon energy measures based on thermal energy storage in buildings: A review. Renew. Sust. Energ. Rev. 82(2018), 3, 3705–3749. doi: 10.1016/j.rser.2017.10.093
- [3] Mahfuz M.H., Anisur M.R., Kibria M.A., Saidur R., Metselaar I.H.S.C: Performance investigation of thermal energy storage system with phase change material (PCM) for solar water heating application. Int. Commun. Heat Mass Transf. 57(2014), 132–139. doi: 10.1016/j.icheatmasstransfer.2014.07.022
- [4] Rolka P., Kwidzinski R., Przybylinski T., Tomaszewski A.: Thermal characterization of medium-temperature phase change materials (PCMs) for thermal energy storage using the t-history method. Materials 14(2021), 7371. doi: 10.3390/ma14237371
- [5] Kuta M.: Mobilized thermal energy storage for waste heat recovery and utilizationdiscussion on crucial technology aspects. Energies 15(2022), 8713. doi: 10.3390/en15228713
- [6] Rolka P., Przybylinski T., Kwidzinski R., Lackowski M.: Thermal properties of RT22 HC and RT28 HC phase change materials proposed to reduce energy consumption in heating and cooling systems. Renew. Energ. 197(2022), 462–471. doi:10.1016/j.renene.2022.07.080
- [7] Karwacki J.: Cooling system with PCM storage for an office building: Experimental investigation aided by a model of the office thermal dynamics. Materials 14(2021),1356. doi: 10.3390/ma14061356
- [8] Karwacki J., Kwidzinski R., Leputa P.: Performance analysis and PCM selection for adsorption chiller aided by energy storage supplied from the district heating system. Arch. Thermodyn. 43(2022), 4, 135–169. doi: 10.24425/ather.2022.144409
- [9] Vérez D., Borri E., Crespo A., Mselle B., de Gracia Á., Zsembinszki G., Cabeza L.: Experimental study on two PCM macro-encapsulation designs in a thermal energy storage tank. Appl. Sci. 11(2021), 6171. doi: 10.3390/app11136171
- [10] Szczesniak A., Bujalski W., Grzebielec A., Futyma K., Karwacki J., Rolka P.: A hybrid district heating substation with an adsorption chiller and PCM storage units: a concept and preliminary study. E3S Web Conf. 321(2021), 02009. doi: 10.1051/e3sconf/202132102009
- [11] Berardi U., Soudian S.: Experimental investigation of latent heat thermal energy storage using PCMs with different melting temperatures for building retrofit. Energ. Buildings 185(2019), 180–195. doi: 10.1016/j.enbuild.2018.12.016
- [12] Liu Z., Yu Z., Yang T., Qin D., Li S., Zhang G., Haghighat F., Joybari M.: A review on macro-encapsulated phase change material for building envelope applications. Build. Environ. 144(2018), 281–294. doi: 10.1016/j.buildenv.2018.08.030
- [13] Stropnik R., Stritih U.: Increasing the efficiency of PV panel with the use of PCM, Renew. Energ. 97(2016), 671–679. doi: 10.1016/j.renene.2016.06.011
- [14] Jaworski M.: Thermal performance of heat spreader for electronics cooling with incorporated phase change material, Appl. Therm. Eng. 35(20212), 212–219. doi:10.1016/j.applthermaleng.2011.10.036
- [15] Arshad A., Jabbal M., Yan Y.: Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics. Energ. Convers. Manage. 205(2020), 112444. doi:10.1016/j.enconman.2019.112444
- [16] Sheikholeslami M., Nematpour Keshteli A., Babazadeh H.: Nanoparticles favorable effects on performance of thermal storage units. J. Mol. Liq. 300(20200, 112329. doi:10.1016/j.molliq.2019.112329
- [17] Delgado-Diaz W., Stamatiou A., Maranda S., Waser R., Worlitschek J.: Comparison of heat transfer enhancement techniques in latent heat storage. Appl. Sci. 10(2020), 16, 5519. doi: 10.3390/app10165519
- [18] Mesalhy O., Lafdi K., Elgafy A., Bowman K.: Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energ. Convers. Manage. 46(2005), 6, 847–867. doi:10.1016/j.enconman.2004.06.010
- [19] Williams J., Peterson G.: A review of thermal property enhancements of lowtemperature nano-enhanced phase change materials. Nanomaterials 11(2021), 2578.doi: 10.3390/nano11102578
- [20] Jebasingh E., Arasu V.: A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energ. Stor. Mater. 24(2020), 52–74. doi: 10.1016/j.ensm.2019.07.031
- [21] Wu S.Y., Wang H., Xiao S.: An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J. Therm. Anal. Calorim. 110(2012),1127. doi: 10.1007/s10973-011-2080-x
- [22] Temel Ü.N., Çiftçi B.Y.: Determination of thermal properties of A82 organic phase change material embedded with different type nanoparticles. IsıBilimi ve Tekniği Dergisi 38(2018), 2, 75–85.
- [23] Radhakrishnan N., Thomas S., Sobhan C.B.: Characterization of thermophysical properties of nano-enhanced organic phase change materials using T-history method. J. Therm. Anal. Calorim. 140(2020), 2471–2484. doi: 10.1007/s10973-019-08976-1
- [24] Choi D.H., Lee J., Hong H., Kang Y.T.: Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. Int. J. Refrig. 42(2012), 12–120. doi:10.1016/j.ijrefrig.2014.02.004
- [25] Mehrali M., Sadeghinezhad E., Latibari S.T., Kazi S.N., Mehrali M., Zubir M.N., Metselaar H.S.C.: Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 9(2014), 15. doi:10.1186/1556-276X-9-15
- [26] Manufacturer’s data of graphene nanoparticles. PlasmaChem. https://www.plasmachem.com (accessed 9 Oct. 2023).
- [27] Manufacturer’s data of sodium dodecylbenzenesulfonate. Sigma-Aldrich. https:// www.sigmaaldrich.com/PL/pl/product/aldrich/289957 (accessed 9 Oct. 2023).
- [28] Manufacturer’s data of RT28 HC Rubitherm. https://www.rubitherm.eu/en/ productcategory/organische-pcm-rt (accessed 9 Oct. 2023).
- [29] Soares N.: Thermal energy storage with phase change materials (PCMs) for the improvement of the energy performance of buildings. PhD thesis, University of Coimbra, Coimbra 2015.
- [30] Lovelyn T., Velraj R.: Thermophysical characterization and comparison of PCMs using DSC and T-History experimental setup. Mater. Res. Express 6(2019), 12,125527. doi: 10.1088/2053-1591/ab5aae
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8521426-fedd-4f8b-9aea-410dd76c226e