PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New weighted coefficients of the average-derivative modeling method based on global optimization algorithms

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The average-derivative optimal method (ADM) is widely applied in frequency-domain forward modeling for its high accuracy and simplicity. Since tuning weighted coefficients can suppress the numerical dispersion, it is extremely important to adopt a suitable optimization algorithm to determine the ADM coefficients. To date, most schemes associated with the ADM have adopted the conventional local optimization algorithms, which are sensitive to the initial value and easy to converge on local optimum. The motivation of this paper is to derive new and more accurate ADM coefficients for 2D frequency-domain elastic-wave equation by the global optimization algorithms, which can escape from the local optimum with a certain probability. We adopt simulated annealing (SA) and particle swarm optimization (PSO) algorithms for global optimization and numerical modeling. Compared with the conventional local optimization algorithm, the global optimization algorithms have smaller phase errors, especially for S-wave phase velocity. Numerical examples demonstrate that the global optimization algorithms produce more accurate results than the local optimization algorithm.
Czasopismo
Rocznik
Strony
619--636
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
Bibliografia
  • 1. Aki K, Richards PG (1980) Quantitative seismology, Theory and methods I.
  • 2. Cao SH, Chen JB (2012) A 17-point scheme and its numerical implementation for high-accuracy modeling of frequency-domain acoustic equation (in Chinese). Chin J Geophys 55:3440-3449
  • 3. Cao J, Chen JB (2018) Adaptive free-surface expression for elastic wave finite-difference modeling (in Chinese). Geophys Prospect Pet 57:522-530
  • 4. Cao J, Chen JB, Dai MX (2018) An adaptive free-surface expression for three-dimensional finite-difference frequency-domain modelling of elastic wave. Geophys Prospect 66:707-725
  • 5. Chen JB (2012) An average-derivative optimal scheme for frequencydomain scalar wave equation. Geophysics 77(6):T201-T210
  • 6. Chen JB (2014) Dispersion analysis of an average-derivative optimal scheme for Laplace-domain scalar wave equation. Geophysics 79(2):T37
  • 7. Chen JB, Cao J (2016) Modeling of frequency-domain elastic-wave equation with an average-derivative optimal method. Geophysics 81(6):T339-T356
  • 8. Chen JB, Cao J (2018) An average-derivative optimal scheme for modeling of the frequency-domain 3D elastic wave equation. Geophysics 83(4):T209-T234
  • 9. Datta D, Sen MK (2016) Estimating a starting model for full-waveform inversion using a global optimization method. Geophysics 81(4):R211-R223
  • 10. Dong SL, Chen JB (2022) An affine generalized optimal scheme with improved free-surface expression using adaptive strategy for frequency-domain elastic wave equation. Geophysics 87(3):T183-T204
  • 11. Fan N, Zhao LF, Xie XB, Tang XG, Yao ZX (2017) A general optimal method for 2D frequency-domain finite-difference solution of scalar wave equation. Geophysics 82(3):1-41
  • 12. Fernández Martínez JL, Mukerji T, García Gonzalo E, Suman A (2012) Reservoir characterization and inversion uncertainty via a family of particle swarm optimizers. Geophysics 77(1):M1-M16
  • 13. Gu BL, Liang GH, Zhao LF (2013) A 21-point finite difference scheme for 2D frequency-domain elastic wave modeling. Explor Geophys 44:156-166
  • 14. Jo CH, Shin C, Suh JH (1996) An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics 61(2):529-537
  • 15. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Paper read at Proceedings of ICNN'95-international conference on neural networks.
  • 16. Levander AR (1988) Fourth-order finite-difference P-SV seismograms. Geophysics 53(11):1425-1436
  • 17. Liu Y (2013) Globally optimal finite-difference schemes based on least squares. Geophysics 78(4):T113-T132
  • 18. Liu Y (2014) Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophys J Int 197(2):1033-1047
  • 19. Liu Y (2019) Acoustic and elastic finite-difference modeling by optimal variable-length spatial operators. Geophysics 85(2):T57-T70
  • 20. Liu L, Liu H, Liu HW (2013) Optimal 15-point finite difference forward modeling in frequency-space domain (in Chinese). Chin J Geophys 56:644-652
  • 21. Liu W, He YM, Li S, Wu H, Yang LF, Peng ZM (2019) A generalized 17-point scheme based on the directional derivative method for highly accurate finite-difference simulation of the frequencydomain 2D scalar wave equation. J Seism Explor 28(1):41-71
  • 22. Min DJ, Shin C, Kwon BD, Chung S (2000) Improved frequencydomain elastic wave modeling using weighted-averaging difference operators. Soc Explor Geophys 65(3):884-895
  • 23. Mittet R (2002) Free-surface boundary conditions for elastic staggered modeling schemes. Geophysics 67(5):1616-1623
  • 24. Moczo P, Kristek J, Galis M (2014) The Finite-Difference Modelling of Earthquake Motions. Cambridge University Press, Cambridge, pp 1-365
  • 25. Operto S, Virieux J, Amestoy P, L’Excellent JY, Giraud L, Ali HBH (2007) 3D finite-difference frequency-domain modeling of viscoacoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics 72(5):SM195-SM211
  • 26. Operto S, Virieux J, Ribodetti A, Anderson JE (2009) Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media. Geophysics 74(5):T75-T95
  • 27. Operto S, Brossier R, Combe L, Métivier L, Ribodetti A, Virieux J (2014) Computationally efficient three-dimensional acoustic finite-difference frequency-domain seismic modeling in vertical transversely isotropic media with sparse direct solver. Geophysics 79(5):T257-T275
  • 28. Sen MK, Stoffa PL (2013) Global optimization methods in geophysical inversion. Cambridge University Press
  • 29. Shi Y, Eberhardt RC (1998), A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation 69-73
  • 30. Shin C, Sohn H (1998) A frequency-space 2-D scalar wave extrapolator using extended 25-point finite-difference operator. Geophysics 63(1):289-296
  • 31. Štekl I, Pratt RG (1998) Accurate viscoelastic modeling by frequency-domain finite differences using rotated operators. Geophysics 63(5):1779-1794
  • 32. Tang XD, Liu H, Zhang H, Liu L, Wang ZY (2015) An adaptable 17-point scheme for high-accuracy frequency-domain acoustic wave modeling in 2D constant density media. Geophysics 80(6):T211-T221
  • 33. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317-325
  • 34. Virieux J (1986) P-SV wave propagation in heterogeneous media; velocity-stress finite-difference method. Geophysics 51:1933-1942
  • 35. Yang L, Yan HY, Liu H (2017) Optimal staggered-grid finite-difference schemes based on the minimax approximation method with the Remez algorithm. Geophysics 82(1):T27-T42
  • 36. Zhang JH, Yao ZX (2013a) Optimized finite-difference operator for broadband seismic wave modeling. Geophysics 78(1):A13-A18
  • 37. Zhang JH, Yao ZX (2013b) Optimized explicit finite-difference schemes for spatial derivatives using maximum norm. J Com-put Phys 250:511-526
  • 38. Zhang WF, Wang G, Zhu ZH, Xiao J (2010) Population size selection of particle swarm optimizer algorithm (in Chinese). Chinese J Comput Syst Appl 19(5):125-128
  • 39. Zhang H, Liu H, Liu L, Jin WJ, Shi XD (2014) Frequency domain acoustic equation high-order modeling based on an averagederivative method (in Chinese). Chin J Geophys 57:1599-1611
  • 40. Zhang H, Zhang BJ, Liu B, Liu H, Shi XD (2015) Frequency-space domain high-order modeling based on an average-derivative optimal method. In: 85th Annual International Meeting: SEG Expanded Abstracts: 3749-375
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f850a3a8-f292-4d15-bb9f-c5feece1c04a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.